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Abstract 

    The dynamics of fractional-order systems has attracted increasing attention in 

recent years. In this paper, the dynamics of the Newton–Leipnik system with fractional 

order was studied numerically. The system displays many interesting dynamic 

behaviors, such as fixed points, periodic motions, chaotic motions, and transient chaos. 

It was found that chaos exists in the fractional-order system with order less than 3. In 

this study, the lowest order for this system to yield chaos is 2.82. A period-doubling 

route to chaos in the fractional-order system was also found. 
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1. Introduction 

    In recent years, numerous studies and applications of fractional-order systems in 

many areas of science and engineering have been presented [1,2]. This is a result of 

better understanding of the potential of fractional calculus revealed by problems such as 

viscoelasticity and damping, chaos, diffusion, wave propagation, percolation and 

irreversibility. Recently, many systems have been identified that display fractional-order 

dynamics, such as viscoelastic systems [3–5], dielectric polarization [6], electrode–

electrolyte polarization [7], electromagnetic waves [8], quantitative finance [9], 

quantum evolution of complex system [10], and the control of fractional-order dynamic 

systems [11–13]. Besides, Zaslavsky [14] presented a broad review of existing models 

of fractional kinetics and their connection to dynamical models, phase-space topology, 

and other characteristics of chaos. Moreover, in the last decade many researchers have 

found that chaotic attractors indeed exist in fractional-order systems [15–20]. In 2004, 
Li and Chen [21] also found the hyperchaos in fractional-order Ro  ssler equations 

with order as low as 3.8. Sheu et al. [22] studied the dynamics of a new system with a 

fractional order. The lowest order for this new system to yield chaos was 2.43. The 

system displays rich dynamic behaviors, including fixed points, periodic motions, 

chaotic motions, and transient chaos. Moreover, it would be interesting to determine 

whether the system can generate a four-scroll chaotic attractor. Recently, Sheu et al. 

[23] investigated the influence of fractional order of damping on the dynamic behavior 

of the Duffing equation. 

    In 1981, Leipnik and Newton [24] found two strange attractors in rigid body 

motion in a pioneering report on the concept of chaotic motion in gyros. Very recently, 

this system was termed the Newton–Leipnik system by Wang and Tian [25]. Since 

Leipnik and Newton’s work, the chaotic dynamics in rigid body motion have been 

intensively studied by many scientists [26–30]. Recently, in a study of the anti-control 

of chaos in rigid body motion, Chen and Lee [31] introduced a new chaotic system that 

can generate a two-scroll chaotic attractor. In 2002, Richter [32] investigated the 

stability and chaos control of the Newton–Leipnik system with a static non-linear 

feedback law based on the Lyapunov function. In 2005, Wang and Tian [25] also 

studied bifurcation of the Newton–Leipnik system and controlled the system using a 
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simple linear controller. In this paper, the dynamics of the Newton–Leipnik system with 

fractional order is studied numerically. 

2. Fractional derivatives and the Newton Leipnik system with 
fractional order 

    There are several definitions of fractional derivatives [1]. In this study, we use the 

Caputo-type fractional derivative defined by [33] 
  (x)yJy(x)D (m)m , , (1) 

where m = [ ] is the value  rounded up to the nearest integer, )m(y  is the ordinary 

mth derivative of y , and: 

  dt)t(z)tx(
)(

)x(zJ
x

0

11  (2) 

is the Riemann–Liouville integral operator of order > 0, where )(  is the gamma 

function. The definition is significantly different from the classical definition of the 

derivative. Many other researchers use Riemann–Liouville fractional derivatives, 

defined by: 

  )()( xyJ
dx
dxyD m

m

m

. (3) 

Typically, homogeneous initial conditions are required. The Caputo version was chosen 

specifically because inhomogeneous initial conditions are allowed.  

    The Newton–Leipnik system is described by the following non-linear differential 

equations: 
  yzyaxx 10  

  xzyxy 54.0  (4) 

  xybzz 5  

where x , y , and z  are the state variables, and a  and b  are positive parameters. It 

is very interesting that the Newton–Leipnik system is a chaotic system with two strange 
attractors [24]. When ( a ,b ) = (0.4, 0.175), with initial states (0.349, 0, -0.16) and 

(0.349, 0,-0.18), system (4) displays two strange attractors. An in-depth discussion of 

the system can be found elsewhere [24].  

    Here, the fractional order of the Newton–Leipnik system is considered. The 

standard derivative is replaced by a fractional derivative as follows: 
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where 0 q1,q2,q3 1; the order is denoted by q = (q1,q2,q3) here. 

3. Numerical simulations 

    An efficient method for solving system (5) is the predictor–correctors scheme, 

which is a generalization of the Adams–Bashforth–Moulton scheme. In the following 

simulations, this method is used to integrate system (5). The detailed algorithm of the 

scheme was developed by Diethelm et al. [34–37]. Li and Peng [38] also used this 

method to study the chaos in Chen’s system with fractional order. The scheme was also 

adopted to simulate the chaos in anew system with fractional order by Sheu et al. [22]. 

Applying the predictor–correctors scheme, it was found that chaos indeed exists in the 

Newton–Leipnik system with fractional order. 
    For convenience, the system parameters are given as a = 0.4, and b = 0.175, with 

initial state (0.349, 0, -0.18) throughout the paper. It must be pointed out when the 

initial state (0.349, 0, -0.16) is used, the system still eventually approaches the same 

attractor. Two cases are considered, as follows: 

    (1) Fix q1= q2 = q3 = , and let  vary. The system is calculated numerically 

against [0.92, 1], while the incremental value of  is 0.01. The simulation results 

demonstrate that chaos indeed exists in the fractional-order system with order less than 

3. It was found that when 0.94 1.0, system (5) shows chaotic behavior. When = 
0.99, 0.96 and 0.94, chaotic attractors are found; yx  phase diagrams are shown in 

Fig. 1a–c, respectively. When = 0.92, the chaotic motion disappears and the system is 
stabilized to a fixed point, as shown by the yx  phase plot in Fig. 1d. It is obvious 

that the trajectory for = 0.92 is attracted to a fixed point. A particular phenomenon of 

the system is that it displays transient chaotic behavior. The phase trajectory is shown in 
Fig. 2a for = 0.93. The time history of )(tx  is also presented in Fig. 2b, from which 

it is evident that the time history eventually converges to a fixed point. 

    (2) Fix q1 = q3 = 1, and let q2 reduce to values less than 1. System (5) is chaotic 
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when q2 = 0.89, and 0.96 q2 1.0. Fig. 3a–d shows the phase trajectories for q2 = 0.97, 

0.89, 0.88, and 0.87, respectively. It is evident in Fig. 3a and b that system (5) displays 

chaotic motion. The periodic motion and a fixed point are also plotted in Fig. 4c and d, 

respectively. System (5) is periodic when q2 = 0.88, and 0.90 q2 0.95. Furthermore, 

Fig. 4a–d shows that the system can display period-1, period-2, period-4 and period-8 

motions. Thus, Fig. 4 identifies a period-doubling route to chaos. In addition, it is 

interesting to observe that the chaotic attractors seem to rotate by approximately 90°. In 

other words, another strange attractor is also present in this case 

    From the above analysis, the lowest order we found for this system to yield chaos 

is 2.82. The system displays a rich dynamic behaviors, such as fixed points, periodic 

motions, chaotic motions, and transient chaos. Besides, two strange attractors are 

present due to different fractional orders. 

 

(a) (b) 

 

(c)                               (d) 
Fig.1. Phase diagrams for system with fractional orders at q1= q2 = q3 = :  

(a) = 0.99; (b) = 0.96; (c) = 0.94; and (d) = 0.92. 
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(a)                              (b) 
Fig.2. Dynamic behavior of system (5) at q1= q2 = q3 = = 0.93: 

 (a) phase diagrams; and (b) time history of x(t). 
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(c)                              (d) 

Fig.3. Phase diagrams for system (5) at q1= q3 = 1 and:  

(a) q2 = 0.97; (b) q2 = 0.89; (c) q2 = 0.88; and (d) q2 = 0.87.  
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(a)                              (b) 

 

 

 

(c)                              (d) 

Fig.4. Phase diagrams for system (5) at q1= q3 = 1 and: 

 (a) q2 = 0.94; (b) q2 = 0.95; (c) q2 = 0.953; and (d) q2= 0.9537. 

4. Conclusions 

    The dynamics of the Newton–Leipnik system with fractional order was studied 

numerically. The system was found to display rich dynamic behaviors, such as fixed 

points, periodic motions, chaotic motions, and transient chaos. It was found that chaos 

exists in the fractional-order system with order less than 3. The lowest order found to 

have chaos was 2.82. A period-doubling route to chaos in the fractional-order system 

was also found. The fact that in the second case examined, the chaotic attractors seem to 

rotate by approximately 90° is of particular interest. In other words, two strange 

attractors were also found in this study. It is known that fractional derivatives still lack 

complete geometrical interpretations in the time domain. Therefore, theoretical analysis 
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of the dynamics of the fractional-order system should be the subject of future studies. 

On the other hand, chaos control and synchronization of this system are still interesting 

problems to be investigated and should also be considered in the near future. 

References 

1.  Podlubny I, 1999, Fractional differential equations. New York: Academic Press. 

2. Hilfer R, 2001, Applications of fractional calculus in physics. New Jersey: World 

Scientific. 

3. Bagley RL, Calico RA, 1991, “Fractional order state equations for the control of 

viscoelastically damped structures.” J Guid Control Dyn; Vol. 14, pp. 304–311. 

4. Koeller RC, 1984, “Application of fractional calculus to the theory of 

viscoelasticity.” J Appl Mech; Vol. 51, pp. 199. 

5. Koeller RC, 1986, “Polynomial operators, Stieltjes convolution, and fractional 

calculus in hereditary mechanics.” Acta Mech; Vol. 58, pp. 251–264. 

6. Sun HH, Abdelwahed AA, Onaral B, 1984, “Linear approximation for transfer 

function with a pole of fractional order.” IEEE Trans Autom Control; Vol. 29, pp. 

441–444. 

7. Ichise M, Nagayanagi Y, Kojima T, 1971, “An analog simulation of noninteger 

order transfer functions for analysis of electrode process.” J Electroanal Chem; Vol. 

33, pp. 253–265. 

8. Heaviside O, 1971, “Electromagnetic theory.” New York: Chelsea. 

9. Laskin N, 2000, “Fractional market dynamics.” Physica A; Vol. 287, pp. 482–492. 

10. Kunsezov D, Bulagc A, Dang GD, 1999, “Quantum levy processes and fractional 

kinetics.” Phys Rev Lett; Vol. 82, pp. 1136–1139. 

11. Hartley TT, Lorenzo CF, 2002, “Dynamics and control of initialized fractional-

order systems.” Nonlinear Dyn; Vol. 29, pp. 201–233. 

12. Hwang C, Leu JF, Tsay SY, 2002, “A note on time-domain simulation of feedback 

fraction-order systems.” IEEE Trans Autom Control; Vol. 47, pp. 625–631. 

13. Podlubny I, Petras I, Vinagre BM, O’Leary P, Dorcak L, 2002, “Analogue 

realizations of fractional-order controllers.” Nonlinear Dyn; Vol. 29, pp. 281–286. 

14. Zaslavsky GM. 2002, Chaos, fractional kinetics, and anomalous transport. Phys 

Rep; Vol. 371, pp. 461–580. 



-  

70 

15. Hartley TT, Lorenzo CF, Qammer HK, 1995, “Chaos in a fractional order Chua’s 

system.” IEEE Trans CAS-I; Vol. 42, pp. 485–490. 

16. Arena P, Caponetto R, Fortuna L, Porto D, 1997, “Chaos in a fractional order 

Duffing system.” In: Proceedings of ECCTD. Budapest; pp. 1259–1262. 

17. Ahmad W, El-Khazali R, El-Wakli A, 2001, “Fractional-order Wien-bridge 

oscillator.” Electron Lett; Vol. 37, pp. 1110–1112. 

18. Ahmad WM, Sprott JC, 2003, “Chaos in fractional-order autonomous nonlinear 

systems.” Chaos, Solitons & Fractals; Vol. 16, pp. 339–351. 

19. Grigorenko I, Grigirenko E, 2003, “Chaotic dynamics of the fractional Lorenz 

system.” Phys Rev Lett ; Vol. 91, 034101. 

20. Arena P, Fortuna L, Porto D, 2000, “Chaotic behavior in noninteger-order cellular 

neural networks.” Phys Rev E; Vol. 61, pp. 776–781. 

21. Li C, Chen G, 2004, “Chaos and hyperchaos in fractional order Rössler equation.” 

Physica A; Vol. 341, pp. 55–61. 

22. Sheu LJ, Chen HK, Chen JH, Tam LM, 2005, “Chaos in a new system with a 

fractional order.” Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.10.073. 

23. Sheu LJ, Chen HK, Chen JH, Tam LM, 2005, “Chaotic dynamics of the 

fractionally damped Duffing equation.” Chaos, Solitons & Fractals; in press, 

doi:10.1016/j.chaos.11.          066. 

24. Leipnik RB, Newton TA, 1981, “Double strange attractors in rigid body motion.” 

Phys Lett A; Vol. 86, pp. 63–67. 

25. Wang X, Tian L, 2006, “Bifurcation analysis and linear control of the Newton–

Leipnik system.” Chaos, Solitons & Fractals; Vol. 27, pp. 31–38. 

26. Ge ZM, Chen HK, Chen HH, 1996, “The regular and chaotic Motions of a 

symmetric heavy gyroscope with harmonic excitation.” J Sound Vibr; Vol. 198, pp. 

131–147. 

27. Ge ZM, Chen HK, 1996, “Stability and chaotic motions of a symmetric heavy 

gyroscope.” Jpn J Appl Phys; Vol. 35, pp. 1954–1965. 

28. Tong X, Mrad N, 2001, “Chaotic motion of a symmetric gyro subjected to a 

harmonic base excitation.” Trans ASME J Appl Mech; Vol. 68, pp. 681–684. 

29. Chen HK, 2002, “Chaos and chaos synchronization of a symmetric gyro with 

linear-plus-cubic damping.” J Sound Vibr; Vol. 255, pp. 719–740. 



-  

71 

30. Chen HK, Lin TN, 2003, “Synchronization of chaotic symmetric gyros by one-way 

coupling conditions.” ImechE J Mech Eng Sci; Vol. 217, pp. 331–340. 

31. Chen HK, Lee CI, 2004, “Anti-control of chaos in rigid body motion.” Chaos, 

Solitons & Fractals; Vol. 21, pp. 957–965. 

32. Richter H, 2002, “Controlling chaotic system with multiple strange attractors.” 

Phys Lett A; Vol. 300, pp. 182–188. 

33. Caputo M, 1967, Linear models of dissipation whose Q is almost frequency 

independent – II. Geophys J R Astron Soc; Vol. 13, pp. 529–539. 

34. Diethelm K, 1997, An algorithm for the numerical solution of differential equations 

of fractional order. Electron Trans Numer Anal; Vol. 5, pp. 1–6. 

35. Diethelm K, Ford NJ, 2002, “Analysis of fraction differential equations.” J Math 

Anal Appl; Vol. 265, pp. 229–248. 

36. Diethelm K, Ford NJ, Freed AD, 2002, “A predictor–corrector approach for the 

numerical solution of fractional differential equations.” Nonlinear Dyn; Vol. 29, 

pp. 3–22. 

37. Diethelm K, Freed AD, 1999, The FracPECE subroutine for the numerical solution 

of differential equations of fractional order. In: Heinzel S, Plesser T, editors. 

Forschung und wissenschaftliches Rechnen. Göttingen: Gesellschaft f r 

wissenschaftliches Datenverarbeitung; pp. 57–71. 

38. Li C, Peng G, 2004, “Chaos in Chen’s system with a fractional order.” Chaos, 

Solitons & Fractals; Vol. 22, pp. 443–450



-  

72 

 


