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Abstract 

    Based upon the experimental formula of Barus [9], the study of squeeze film 

problems between exponential curved circular disks of Murti [7] is extended by 

considering the piezo-viscous effects of lubricants. Comparing with the case of iso-

viscous lubricants of Murti [7], the effects of exponential dependency of viscosity 

improve the performance characteristics of exponential curved circular disks. The 

results through the variation of the piezo-viscous parameter and the exponential 

curvature parameter provide useful references and applications for industrial 

engineering.
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1. INTRODUCTION 

    The squeeze film pressure is built up when two lubricated plates approach each 

other with a squeezing velocity. A finite response time is then required to squeeze the 

lubricant out of the plates. As a results, the lubricant film within the plates acts as a 

useful cushion. Squeeze film plates with different configurations receive great attention 

in many areas of applications such as human joints, mechanical components, matching 

gears, clutch plates, etc. By assuming an iso-viscous property (i.e., the lubricant 
viscosity constant), many investigators have studied the circular squeeze film 

problems, such as the squeeze film characteristics between parallel circular disks by 

Pinkus and Sternlicht [1], Murti [2], Fuller [3] and Hamrock [4]; the squeeze film 

performances between parallel annular disks by Allen and McKillop [5] and Wu [6]; 

and the squeeze film behavior between curved disks by Murti [7] and Bhat and Hingu 

[8]. In accordance with the experimental study by Barus [9], the variation of the 
lubricant viscosity  grows exponentially with the pressure p  is suggested through 

the relationship. 
  )exp(0 p  (1) 

where 0  denotes the isothermal viscosity at the ambient pressure, and  represents 

the piezo-viscous coefficient. Based upon this consideration, Chen [10] investigates the 

elastohydrodynamic problems in the inlet region of line contacts. It is found that the 

piezo-viscous effects on the film thickness are not negligible. Elsharkawy [11] analyzes 

the lubrication performances of externally pressurized circular porous bearings. It is 

shown that the piezo-viscous effects have significant influences on the pressure profiles 

and the load-carrying capacity. However, the study for squeeze film problems between 

exponential curved circular disks by considering the piezo-viscous effects is still absent. 

Since the exponential curved circular mechanism is important in engineering practice as 

Murti [7] and Bhat and Hingu [8], further studies are motivated. 

    In the present paper, we extend the study of squeeze film problems between 

exponential curved circular disks of Murti [7] by considering the piezo-viscous effects 

of lubricants. A closed-form analytical solution of the film pressure will be derived by 

solving the nonlinear modified Reynolds equation. Comparing with the case of iso-

viscous lubricants, the piezo-viscous effects on the squeeze film characteristics of 
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curved circular disks are presented and discussed in terms of the load capacity and the 

response time through the variation of the piezo-viscous parameter and the exponential 

curvature parameter. 

2. FORMULATION AND ANALYSIS 

    Figure 1 shows the squeeze film configuration between exponential curved circular 

disks lubricated with an incompressible isothermal Newtonian lubricant considering the 

piezo-viscous effects, in which the upper curved disk is moving towards the lower disk 
with a squeezing velocity: dtdhm / . The radius of the disk is a  and the minimum 

film thickness is mh . The film thickness h  is symmetric about the z axis and is 

described by an exponential function as Murti [7]. 
)/exp( 22 arhh m  (2)

In this expression,  is the exponential curvature parameter defining the film shapes. 

For 0 , convex films are generated; for 0 , plane-disk films are recovered; and 

for 0 , concave films are developed between the disks. According to the derivation 

of Lu and Lin [12], the modified Reynolds equation considering the piezo-viscous 

effects for the exponential curved circular disks is 

dt
dh

dr
dprh

dr
d

r
m121 3

 (3) 

It is noted that when the piezo-viscous coefficient 0 , then constant, and the 

above modified Reynolds equation reduces to the case of iso-viscous lubricants by 

Murti [7]. In order to analyze the problems conveniently, the non-dimensional variables 

and parameters are introduced as follows. 
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where  represents the piezo-viscous parameter characterizing the effects of pressure 

varying with the viscosity. As a result, the film thickness, the modified Reynolds 

equation considering the piezo-viscous effects, and the pressure boundary conditions 

can be written in non-dimensional form. 
)exp( 2RHH m  (6)
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The non-dimensional Reynolds equation is a highly nonlinear differential equation. 

However, integrating the differential equation twice and applying the pressure boundary 

conditions, one can derive the solution for the squeeze film pressure. 

)(1ln1 33 2

ee
H

P R

m

 (10) 

Integrating the squeeze film pressure over the film region, one can obtain the load-

carrying capacity. 
rdrpW

a

r
2

0
 (11) 

Introducing the non-dimensional form yields: 

RdRP
dtdHa
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m 1

04
0

3
0

*)/(2
 (12) 

After performing the integration, the load-carrying capacity is obtained. 
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H

L R

m
R

)(1ln1 331
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Introducing the non-dimensional response time: 

t
a

WhT m
4

0

2
0

2
 (14) 

one can obtain the differential equation governing the variation of non-dimensional 

response time with the non-dimensional film thickness. 
1

33
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dH R

m
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m  (15) 

Integrating the differential equation and applying the initial condition: 1)0(THm ,

one can derive the relationship for the response time varying with film thickness. 

m
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0

1 2

 (16) 

The values of the non-dimensional load capacity and the non-dimensional response time 

can be numerically obtained by using the Gaussian-Quadrature method by Faires and 

Burden [13]. 
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3. RESULTS AND DISCUSSION 

    Based on the above formulation and analysis, a closed-form analytical solution has 

been derived for the squeeze film problems between exponential curved circular disks 

with piezo-viscous effects. Three special cases can be recovered from some specific 
values of the exponential curvature parameter  defined in equation (2) and the piezo-

viscous parameter  defined in equation (5). Case 1: 0 , 0 .  It is the plane-

disk squeeze film problem using the iso-viscous lubricants by Fuller [3] and Hamrock 

[4]. Taking the limit of equation (13) gives their results. 

30,0

75.0lim
mH

L  (17) 

Case 2: 0 , 0 . It is the curved-disk squeeze film problem using the iso-viscous 

lubricants. Taking the limit of equation (13) yields the results derived by Murti [7].

]1)31([
6

1lim 3
320,0

e
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L
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 (18) 

Case 3: 0 , 0 . It is the plane-disk squeeze film problem considering the piezo-

viscous effects. Taking the limit of equation (13) one can obtain the load-carrying 

capacity. 

RdRR
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L
m

R
)1(31ln1lim 2

3

1

00,0
 (19) 

Figure 2 presents the variation of the non-dimensional load-carrying capacity L  with 
the non-dimensional minimum film height mH  for different values of  and .

Comparing with the case of iso-viscous lubricants, the squeeze film disks considering 
the piezo-viscous effects )005.0(  are observed to result in higher values of the 

load-carrying capacity. Changing the convex film shape )2.0(  to the plane film 

shape )0(  and to the concave film shape )2.0(  provides further increments 

of the load resulting from the influences of piezo-viscosity. 
    Figure 3 describes the effect of variation of  on the non-dimensional response 
time T  for different  under the non-dimensional minimum film heights mH 0.4

and mH 0.3. The response time is the time required for the height between the disk 

surfaces to be reduced to a given film height. For the case of final minimum film height 
mH 0.4, the response time T  is observed to increase slightly with the value of .

However, for the case of final minimum film height is mH 0.3, longer values of the 
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response time are obtained for larger values of the piezo-viscous parameter and the 

exponential curvature parameter. On the whole, the disks considering the piezo-viscous 

effects are observed to provide an improvement in the squeeze film characteristics and 

result in longer exponential curved circular squeeze film life. 

4. CONCLUSIONS 

A closed-form solution for the film pressure has been derived for the squeeze film 

problems between exponential curved circular disks considering the variation of the 

viscosity growing exponentially with film pressure. Comparing with the case of iso-

viscous lubricants, the piezo-viscous effects provide an increased load capacity and a 

longer response time, and therefore result in longer operating life for exponential curved 

circular squeeze-film disks. 
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Figure 1 Squeeze film configuration between exponential curved circular disks 
considering the piezo-viscous effects 

Squeezing
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Figure 3 Effect of variation of  on the response time T  for different  under the 
minimum film heights mH 0.4 and mH 0.3



84


