含銀金屬配位高分子化合物合成與結構鑑定之研究

王月花 化材系

中文摘要

銀 化 合 物 $\{[Ag(2-Atiae)][X]\}_n$ (2-Atiae = N-[(E)-(2-pyridinyl)methylidene] -4H-1,2,4-triazol-4-amine; $X=NO_3$, PF_6)的合成,由 $AgNO_3$ 及 $AgPF_6$ 與 2-Atiae 配位基反應得到,所有化合物經由 X-Ray 鑑定,其中化合物的陰離子 PF_6 並未鍵結於銀金屬而陰離子 NO_3 鍵結於銀金屬,化合物為一維配位高分子結構。化合物 1 的分子鏈經由氧原子與 2-Atiae 配位基碳原子上的氫原子形成氫鍵鍵結,形成三維的配位高分子,化合物 2 的分子鏈經由氟原子與 2-Atiae 配位基碳原子上的氫原子形成氫鍵鍵結及 Ag---F 的作用力,形成三維的配位高分子。

一、前言

近幾年來,利用自我組合(self-assembly)的方法設計有機及無機超分子已經被廣泛的研究與探討,此種方法可用於設計更多新型態之化合物,並且可控制化合物本身的物理及化學性質。1

超分子化合物使用共價鍵或氫鍵鍵結, 2 根據文獻的報導利用自我組合 (self-assembly)的方法形成 Ag(I) 金屬化合物的無機超分子(supermolecule)結構時的作用力分為六種類型: 3

一、金屬與配位基間的作用力:

利用 Ag(I)與配位基中具有 N-donor 的吡啶配位基所形成的作用力, 4 如下 圖配位基與 Ag(I)的鍵結型式。

圖(1) 配位基與 Ag(I)的鍵結型式

二、 π - π 間的作用力:

有芳香族之配位基與金屬鍵結時,配位基上的吡啶環或苯環上的 π 電子之間有交互作用力存在而結合(如下圖所示)。 5

a. head-to-tail; b. head-to-head; c. edge-to-face

圖(2) 配位基上的吡啶環或苯環上的 π - π 作用力的型式

三、金屬與金屬間作用力:

在無機超分子(supermolecule)結構中當配位基與配位基間不具有任何的作用力時,高分子間的連結是藉由金屬與金屬間的作用力而形成(如下圖所示)。

圖(3) 金屬與金屬原子間的作用力型式

四、金屬與π電子的作用力:

許多的過渡金屬陽離子能接受由不飽和有機分子所提供的 π 電子,因而形成穩定的有機金屬分子,如下圖所示Ag(I)陽離子可與芳香族分子形成弱作用力。

圖(4) Ag(I)陽離子可與芳香族分子形成弱作用力型式

五、庫侖作用力:

金屬陽離子是利用其正電荷配位形成高分子結構,正電荷可經由配位的陰離子(如未參與鍵結的 PF_6 或 BF_4)使其形成電中性,對於兩個相鄰超分子間的庫 侖排斥力的平衡非常重要。

六、陰離子的橋接:

化合物中陰離子的鍵結與否影響高分子的構形,即使是一個微弱的架橋作用 力亦可能導致整體的高分子結構產生扭曲。

圖(5) 常用的多芽氮配位基結構示意圖

一維配位高分子單鏈結構依其配位基、金屬中心、溶劑及陰離子,可以由直線型變化至螺旋型。配位基配位單元間之特性影響配位高分子形成之結構,配位鏈有四種類型(如圖(6)所示)包括(a)直線型(b)鋸齒型(c)矩型及(d)螺旋型結構。

圖(6) 配位鏈之四種類型

(a)直線型(b)鋸齒型(c)矩型(d)螺旋型結構

如4,4'-pytz及3,3'-pytz(圖(5)),此兩結構為異構物,其結構僅是N-donor的位置不同;第一個配位基為直線鍵結,第二個配位基為非軸向鍵結 (off-axis),各

鍵結兩個金屬中心。{[Ag(4,4'-pytz)]BF₄}。 (圖(7)) 9a 為直線鏈,{[Ag(3,3'-pytz)BF₄] $_{\sim}$ (圖(8)) $^{10.11}$ 為鋸齒鏈。

圖(7) 化合物{[Ag(4,4'-pytz)]⁺}∞之晶體結構

圖(8) 化合物{[Ag(3,3'-pytz)⁺]∞之晶體結構

此外;配位基與配位基、配位基與金屬及配位基與陰離子間皆會影響分子鏈之結構。配位基 2,7-diazapyrene (diaz) (圖(5)) 的一維配位高分子化合物,受配位陰離子之影響 { [Ag(diaz)]BF $_4$ } $_{\circ}$ 化合物中BF $_4$ 未配位至金屬,使得Ag(I)之幾何結構為直線狀 (N-Ag-N = 180°)(圖 (9))。 9b 相對的,化合物 { [Ag(diaz)NO $_3$]} $_{\circ}$ 每個陰離子鍵結至金屬,使得Ag(I)之幾何結構如波狀(N-Ag-N = 144.2°) (圖(10))。 12

圖(9) 化合物{[Ag(diaz)]⁺}∞之晶體結構

圖(10) 化合物{[Ag(diaz)NO₃]}∞之晶體結構

理論上任何非線性鏈存在於螺旋構形,單股螺旋配位高分子有許多例子 ^{13,14,15},有些非線性配位基有cisoid 構形,其陡峭的螺旋間有不同之間距(圖(11))。 ^{15a,16}

圖(11) 化合物{[Ag(bisimidazole)NO₃]}∞之晶體結構

pyridazine (prdz)配位基與Ag(I)鹽反應形成螺旋高分子 16a ,由於陰離子的類型不同,使螺旋的間距由3.68Å (NO $_3$)增至5.40Å (CF_3SO_3)(圖(12))。

 $X = NO_3$ $X = CF_3SO_3$

圖(12) 不同陰離子螺旋物 {[Ag(prdz)(X)]}∞ 之間距

3,3'-oxybispyridine (obp)配位基依陰離子之不同而形成不同之螺旋狀結構 $\{[Ag(obp)](X)\}_{\infty}$, 16b 發現最短之螺旋間距為化合物 $\{[Ag(obp)](NO_3)\}_{\infty}$ (圖(13)),而最長之螺旋間距為化合物 $\{[Ag(obp)](PF_6)\}_{\infty}$ 。 16

圖(13) {[Ag(obp)](NO₃)}∞之晶體結構

化合物 $\{[Ag(bis(4-pyridyl)propane)](CF_3SO_3)\}_{\infty}$ (圖(14)), 17 有明顯雙股螺旋之構形,以向左向右形成類似DNA的雙螺旋結構,而此雙螺旋結構是經由

Ag---Ag作用 (Ag---Ag = 3.089Å)形成。¹⁷

圖(14) 雙股螺旋化合物{[Ag(bis(4-pyridyl)propane)](CF₃SO₃)}∞

在本論文中,Ag(I)與含有配位基 **2-Atiae** = N-[(E)-(2-pyridinyl)methylidene]-4H-1,2,4-triazol-4-amine)反應時,共同建構出自我組合(self-assembly)型態的高分子結構。

三、實驗部份

起始物

AgNO₃ 及 AgPF₆ 是 Aldrich Chemical 公司出產,N-[(E)-(2-pyridinyl) methylidene]-4H-1,2,4-triazol-4-amine 是參考文獻方法合成。

製備

 $\{[Ag(2-Atiae)][NO_3]\}_n$

AgNO $_3$ (0.17 g, 1 mmol)及 2-Atiae (0.17 g,1 mmol)置入單頸反應瓶中,再注入 10ml CH $_3$ OH。在室溫下攪拌 0.5hr 後,得到白色固體,白色固體過濾,CH $_3$ OH洗滌,抽乾,得到 0.23 g (68 %)。元素分析 C $_8$ H $_7$ AgN $_5$ O $_4$ 理論值:C: 27.98 %; H: 2.04 %; N: 20.04 %,實際值:C: 27.93 %; H: 2.01 %; N: 20.14 %。

 $\{[Ag(2-Atiae)][PF_6]\}_n$

AgPF₆ (0.21 g, 1 mmol)及 2-Atiae (0.17 g, 1 mmol)置入單頸反應瓶中,再注入 10ml CH₃OH。在室溫下攪拌 0.5hr 後,得到白色固體,白色固體過濾,CH₃OH洗滌,抽乾,得到 0.35 g (82 %)。元素分析 $C_8H_7AgF_6N_5P$ 理論值:C: 22.53 %; H: 1.64 %; N: 16.43 %,實際值:C: 22.50 %; H: 1.64 %; N: 16.45 %。

四、X-ray 晶體結構解析

 $\{[Ag(2-Atiae)][NO_3]\}_n$

晶體1之X-ray繞射資料的收集,是由Siemen CCD繞射儀在25°C下收集,使用 $MoK\alpha$ ($K\alpha$ =0.71073Å)作為輻射源,資料的還原是使用電腦化的步驟和標準方法,表(1)表示晶體結構的相關資料。藍色{ $[Ag(2-Atiae)][BF_4]}_n$ 晶體放在玻璃纖維的頂端,以AB膠固定,使用Hemisphere方法收集,繞射資料,收集範圍4.68 $\leq 2\theta \leq 56.64$ 。繞射點強度經由Corentz和極化(polarization)校正後得到結構因子(structure factors),利用直積法(direct method)得到一個鋅原子的位置,其他的原子則是由一連串的傳立葉轉換與最小平方法計算得到,最後的結果R1=0.0171,wR2=0.0454。表(1)表示晶體的相關資料,表(2)表示晶體1的部份鍵長及鍵角。

 $\{[Ag(2-Atiae)][PF_6]\}_n$

晶體 $\{[Ag(2-Atia)][PF_6]\}_n$ 的 X-ray 繞射資料收集與上述方法相同,晶體 2 最後計算結果 R1=0.0426 及 wR2=0.1677,表(1)為晶體的相關資料,表(3)為晶體 2 的部份鍵長及鍵角。

五、結果與討論

合成

由 $AgNO_3$ 和一當量的 **2-Atiae** 於 CH_3OH 中反應可製{ $[Ag(2-Atiae)][NO_3]$ } $_n$ 。 $AgPF_6$ 和一當量的 **2-Atiae** 於 CH_3OH 中反應可製備{ $[Ag(2-Atiae)][PF_6]$ } $_n$ 。 將 **2-Atiae** 配位基溶於甲醇中放在 AgX ($X=NO_3$, 1, 及 PF_6 , 2)溶於水中之上,得 到適合 X-ray 解析之晶體,並解析其結構。化合物 1-2 不溶於大部分之有機溶劑 包括甲醇 、乙醇、三氯甲烷、苯、甲苯及丙酮,但溶於 DMSO 及 DMF。

結構

 $\{[Ag(2-Atiae)][NO_3]\}_n$

無色晶體{[Ag(2-Atiae)][NO₃]}_n的空間群為Cc,每單位晶格中有四個分子,圖(1)表示{[Ag(2-Atiae)][NO₃]}_n的ORTEP圖,由圖(1)可知一個銀原子配位一個 **2-Atiae**配位基之氮原子,Ag(1)-N(1)之鍵長為2.161(4) Å,N(5)#1-Ag(1)-N(1) 之鍵角為167.63(12)°,Ag---Ag之距離為6.793Å,圖(3)顯示平面一維高分子之圖形,圖(4)表示{[Ag(2-Atiae)][NO₃]}_n的堆疊圖,由圖可得知分子鏈經由氧原子與 **2-Atiae** 配位基碳原子上的氫原子形成氫鍵鍵結(O---H = 2.415-2.454Å; \angle C-H---O = 144.9°、148.0°及152.4°),形成三維的配位高分子。

 $\{[Ag(2-Atiae)][PF_6]\}_n$

無色晶體{ $[Ag(2-Atiae)][PF_6]$ }n的空間群為P $2_1/c$,每單位晶格中有四個分子,圖(2)表示{ $[Ag(2-Atiae)][PF_6]$ }n的ORTEP圖,由圖(2)可知一個銀原子配位一個**2-Atiae**配位基之氮原子,Ag(1)-N(1)之鍵長為2.234(3) Å,N(5)#1-Ag(1)-N(1) 之鍵角為160.97(13) °,Ag---Ag之距離為6.889 Å,圖(3)顯示平面一維高分子之圖形,圖(5)表示{ $[Ag(2-Atiae)][BF_4]$ }n的堆疊圖,由圖可得知分子鏈經由氟原子與

2-Atiae配位基碳原子上的氫原子形成氫鍵鍵結(F---H = 2.523 Å; \angle C-H---F = 141.1°)及Ag---F(Ag---F = 2.978 及3.137 Å)的作用力,形成三維的配位高分子。

六、結論

我們成功的合成新的化合物{[Ag(2-Atiae)][X]} $_n(X=NO_3,PF_6)$ 為配位高分子化合物,其中化合物{[Ag(2-Atiae)][X]} $_n(X=NO_3,PF_6)$ 的**2-Atiae**配位基的氮原子配位至銀原子形成一維高分子,而化合物1的分子鏈經由圖可得知分子鏈經由氧原子與**2-Atiae**配位基碳原子上的氫原子形成氫鍵鍵結,形成三維的配位高分子,化合物2的分子鏈經由氟原子與**2-Atiae**配位基碳原子上的氫原子形成氫鍵鍵結及Ag---F的作用力,形成三維的配位高分子。

參考文獻

- (a) G. R. Desiraju Angew. Chem., Int. Ed. Engl. 1995, 34, 2311.
 (b) G. R. Desiraju Chem. Commun. 1997, 1475.
- 2. G. Wilkinson (Ed.), Comprehensive Coordination Chemistry, 1987, vol. 5, p. 786.
- 3. M. C. T. Fyfe, J. F. Stoddart, Acc. Chem. Res. 1997, 30, 393.
- 4. P. Pyykko, Chem. Rev. 1997, 97, 597.
- 5. A. J. Blake, G. Baum, N. R. Champness, S. S. M. Chung, P. A. Cooke, D. Fenske, A. N. Khlobystov, D. A. Lemenovskii, W. S. Li, M. Schröder, *J. Chem. Soc. Dalton Trans.* **2000**, 4285.
- 6. R. Sneider, M.W. Hosseini, J. M. Planeix, A. D. Cian, J. Fischer, *Chem. Commun.* **1998**, 1625.
- 7. A. F. Wells, Structural Inorganic Chemistry, 5th ed., *Clarendon Press, Oxford*, **1984**.
- 8. M. A. Withersby, A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. Schröder, *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 2327.
- (a) A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, M. Schröder, *Coord. Chem. Rev.* 1999, 183, 117.
 (b) S. Muthu, J. H. K. Yip, J. J. Vittal, *J. Chem. Soc., Dalton Trans.* 2002, 4561,
- and references cited therein.

 10. M. A. Withersby, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey,
- Wan-Sheung Li, M. Schröder, *Cryst. Eng.* **1999**, 2

 11. L. Carlucci, C. Ciani, D.M. Proserpio, *Chem. Commun.* **1999**, 449.
- 12. A. J. Blake, G. Baum, N. R. Champness, S. S. M. Chung, P. A. Cooke, D. Fenske, A. N. Khlobystov, D. A. Lemenovskii, W. S. Li, M. Schröder, *J. Chem. Soc. Dalton Trans.* **2000**, 4285.
- 13. M. L. Tong, X. M. Chen, B. H. Ye, S. W. Ng, *Inorg. Chem.* **1998**, 37, 5278.
- 14. H. P. Wu, C. Janiak, G. Rheinwald, H. Lang, J. Chem. Soc. Dalton Trans. 1999, 183
- (a)C. A. Hester, R. G. Baughman, H. L. Collier, *Polyhedron* 1997, 16, 2893.
 (b)C. Kaes, M. W Hosseini, C. E. F Rickard, B.W. Skelton, A. H. White, Angew. *Chem. Int. Ed. Engl.* 1997,37, 920.
- 16. (a)L. Carlucci, G. Ciani, D. M. Proserpio, A. Sironi, *Inorg. Chem.* **1998**, 37, 5941
 - (b)O. K. Jung, Y. J. Kim, Y. A. Lee, J. K. Park, H. K. Chae, *J. Am. Chem. Soc.* **1998**, 122, 9921.

17. L. Carlucci, G. Ciani, D.W. Gudenberg, D. M. Proserpio, *Inorg. Chem.* **1997**, 36, 3812.

表(1). 化合物 1-2 的晶體資料

formula	C ₈ H ₇ AgN ₅ O ₄	$C_8H_7AgF_6N_5P$
fw	343.07	426.03
crystal system	Monoclinic	Monoclinic
space group	Cc	$P 2_1/c$
a, Å	9.5044(16)	13.7491(8)
b, Å	16.580(2)	10.8426(6)
c, Å	7.7942(4)	8.8097(5)
β , $^{\circ}$	101.257(2)	101.5640(10)
$V, Å^3$	1183.67(10)	1286.66(13)
Z	2	4
d _{calc} ,g/cm ³	2.135	2.199
F(000)	744	824
cryst size, mm	0.20×0.17×0.09	0.72×0.27×0.23
$\mu(\text{Mo K }\alpha),\text{mm}^{-1}$	1.947	1.764
data collen instrum	CCD	CCD
radiation monochromated		
in incident beam(λ Mo	0.71073	0.71073
Kα),Å)		
range(2 θ) for data	$4.68 \leq 2\theta \leq 56.64$	$4.82 \le 2\theta \le 52.00$
collection,deg		
temp.°C	25	25
limiting indices	$-11 \le h \le 11, -22 \le k \le 23,$	$-16 \le h \le 16, -13 \le k \le 13,$
	-10≦1≦8	- 6≦l≦10
reflections collected	6407	7022
independent reflections	2463 [R(int) = 0.0185]	2527 [R(int) = 0.0340]
refinement method		Full-matrix least-squares on F ²
data/restraints/parameters	2463 / 2 / 172	2527 / 0 / 203
quality-of-fit indicator ^c	1.064	1.260
final R indices $[I > 2\sigma(I)]$		R1 = 0.0426, $wR2 = 0.1677$
R indices (all data)	R1 = 0.0178, $wR2 = 0.0461$	R1 = 0.0450, $wR2 = 0.1744$
Largest diff. peak and hole,e/Å ³	0.439 and -0.312	0.952 and -0.831

 $^{^{}a}R1=\Sigma$ || F_{o} | - | F_{c} || $/\Sigma$ || F_{o} | .

 $w = 1 / [\sigma^2(F_o^2) + (ap)^2 + (bp)], p = [max(F_o^2 \text{ or } 0) + 2(F_c^2)] / 3. a = 0.0317, b = 0.2917. for 1; a = 0.1250, b = 0.0000. for 2$

 $^{c}\text{quality-of-fit} \ = \ \left[\ \Sigma \ \text{w(} \ \left| \ F_{o}^{\ 2} \ \right| \ - \ \left| \ F_{c}^{\ 2} \ \right| \ \right)^{2} \ / \ N_{observed} - N_{parameters} \ \right] \right]^{1/2}.$

 $^{{}^{}b}wR2 = [\sum w(F_{o}{}^{2} - F_{c}{}^{2})^{2} / \sum w(F_{o}{}^{2})^{2}]^{1/2}.$

表(2). 化合物{ $[Ag(2-Atiae)][NO_3]$ }n重要部分的鍵長(Å)和鍵角(°)

鍵長						
2.161(4)	Ag(1)-N(1)	2.203(3)				
2.598(4)	Ag(1)-N(2)	2.623(3)				
鍵角						
167.63(12)	N(5)#1-Ag(1)-O(1)	80.99(13)				
107.75(13)	N(5)#1-Ag(1)-N(2)	110.74(11)				
	2.161(4) 2.598(4) 167.63(12)	2.161(4) Ag(1)-N(1) 2.598(4) Ag(1)-N(2) 鍵角 167.63(12) N(5)#1-Ag(1)-O(1)				

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+1/2,z+1/2 #2 x-1/2,-y+1/2,z-1/2

表(3). 化合物{ $[Ag(2-Atiae)][PF_6]$ }_n 重要部分的鍵長(Å)和鍵角($^{\circ}$)

		 鍵長				
Ag-N(5)#1	2.176(3)	Ag-N(1)	2.234(3)			
Ag-N(2)	2.566(3)					
鍵角						
N(5)#1-Ag-N(1)	160.97(13)	N(5)#1-Ag-N(2)	128.83(12)			
N(1)-Ag- $N(2)$	69.13(12)	C(1)-N(1)-C(5)	117.6(4)			

Symmetry transformations used to generate equivalent atoms:

$$#1 -x+1,y-1/2,-z+1/2$$
 $#2 -x+1,y+1/2,-z+1/2$

圖(1). 化合物{[Ag(2-Atiae)][NO₃]}_n的ORTEP圖

圖(2). 化合物{[Ag(2-Atiae)][PF₆]}_n的 ORTEP 圖

圖(3). 化合物{[Ag(2-Atiae)][X]_n (X = NO₃, PF₆)的一維圖形

圖(4). 化合物{[Ag(2-Atiae)][NO₃]}_n 的 Packing 圖

圖(5).化合物{[Ag(2-Atiae)][PF₆]}_n 的 Packing 圖