含銀金屬配位高分子化合物合成與結構鑑定之研究

王月花 化材系

中文摘要

銀化合物 {[Ag(2-Atiae)][X]}_n (2-Atiae = N-[(E)-(2-pyridinyl)methylidene] -4H-1,2,4-triazol-4-amine; X = NO₃, PF₆)的合成,由 AgNO₃及 AgPF₆與 2-Atiae 配位基反應得到,所有化合物經由 X-Ray 鑑定,其中化合物的陰離子 PF₆⁻並未鍵 結於銀金屬而陰離子 NO₃⁻鍵結於銀金屬,化合物為一維配位高分子結構。化合 物1的分子鏈經由氧原子與 2-Atiae 配位基碳原子上的氫原子形成氫鍵鍵結,形 成三維的配位高分子,化合物2的分子鏈經由氟原子與 2-Atiae 配位基碳原子上 的氫原子形成氫鍵鍵結及 Ag---F 的作用力,形成三維的配位高分子。

一、前言

近幾年來,利用自我組合(self-assembly)的方法設計有機及無機超分子已經 被廣泛的研究與探討,此種方法可用於設計更多新型態之化合物,並且可控制化 合物本身的物理及化學性質。¹

超分子化合物使用共價鍵或氫鍵鍵結,² 根據文獻的報導利用自我組合 (self-assembly)的方法形成 Ag(I)金屬化合物的無機超分子(supermolecule)結構 時的作用力分為六種類型:³

一、金屬與配位基間的作用力:

利用 Ag(I)與配位基中具有 N-donor 的吡啶配位基所形成的作用力,⁴如下 圖配位基與 Ag(I)的鍵結型式。

圖(1) 配位基與 Ag(I)的鍵結型式

二、 π - π 間的作用力:

有芳香族之配位基與金屬鍵結時,配位基上的吡啶環或苯環上的π電子之間 有交互作用力存在而結合(如下圖所示)。⁵

97-149

a. head-to-tail; b. head-to-head; c. edge-to-face

圖(2) 配位基上的吡啶環或苯環上的π-π作用力的型式

三、金屬與金屬間作用力:

在無機超分子(supermolecule)結構中當配位基與配位基間不具有任何的作用力時,高分子間的連結是藉由金屬與金屬間的作用力而形成(如下圖所示)。

圖(3) 金屬與金屬原子間的作用力型式

四、金屬與π電子的作用力:

許多的過渡金屬陽離子能接受由不飽和有機分子所提供的π電子,因而形成 穩定的有機金屬分子,如下圖所示 Ag(I)陽離子可與芳香族分子形成弱作用力。

圖(4) Ag(I) 陽離子可與芳香族分子形成弱作用力型式

五、庫侖作用力:

金屬陽離子是利用其正電荷配位形成高分子結構,正電荷可經由配位的陰離子(如未參與鍵結的 PF₆⁻或 BF₄⁻)使其形成電中性,對於兩個相鄰超分子間的庫 龠排斥力的平衡非常重要。 六、陰離子的橋接:

化合物中陰離子的鍵結與否影響高分子的構形,即使是一個微弱的架橋作用 力亦可能導致整體的高分子結構產生扭曲。

圖(5) 常用的多芽氮配位基結構示意圖

一維配位高分子單鏈結構依其配位基、金屬中心、溶劑及陰離子,可以由直線型變化至螺旋型。配位基配位單元間之特性影響配位高分子形成之結構,配位鏈有四種類型(如圖(6)所示)包括(a)直線型(b)鋸齒型(c)矩型及(d)螺旋型結構。

圖(6) 配位鏈之四種類型

(a)直線型(b)鋸齒型(c)矩型(d)螺旋型結構

如4,4'-pytz及3,3'-pytz(圖(5)),此兩結構為異構物,其結構僅是N-donor的位置不同;第一個配位基為直線鍵結,第二個配位基為非軸向鍵結 (off-axis),各

鍵結兩個金屬中心。{ $[Ag(4,4'-pytz)]BF_4$ }。(圖(7))^{9a}為直線鏈,{ $[Ag(3,3'-pytz)BF_4]$ 。(圖(8))^{10.11}為鋸齒鏈。

圖(8) 化合物{[Ag(3,3'-pytz)⁺]∞之晶體結構

此外;配位基與配位基、配位基與金屬及配位基與陰離子間皆會影響分子鏈 之結構。配位基 2,7-diazapyrene (diaz) (圖(5))的一維配位高分子化合物,受配位 陰離子之影響{ $[Ag(diaz)]BF_4$ }。化合物中BF4⁻未配位至金屬,使得Ag(I)之幾何結 構為直線狀 (N-Ag-N = 180^o)(圖 (9))。^{9b} 相對的,化合物 { $[Ag(diaz)NO_3]$ }。每 個陰離子鍵結至金屬,使得Ag(I)之幾何結構如波狀(N-Ag-N =144.2^o) (圖(10))。 ¹²

圖(9) 化合物{[Ag(diaz)]⁺}∞之晶體結構

圖(10) 化合物{[Ag(diaz)NO3]}∞之晶體結構

理論上任何非線性鏈存在於螺旋構形,單股螺旋配位高分子有許多例子 ^{13,14,15},有些非線性配位基有cisoid 構形,其陡峭的螺旋間有不同之間距(圖(11))。 15a,16

圖(11) 化合物{[Ag(bisimidazole)NO₃]}∞之晶體結構

pyridazine (prdz)配位基與Ag(I)鹽反應形成螺旋高分子^{16a},由於陰離子的類型 不同,使螺旋的間距由3.68Å (NO₃⁻)增至5.40Å (CF₃SO₃⁻)(圖(12))。

圖(12) 不同陰離子螺旋物 {[Ag(prdz)(X)]}∞ 之間距

3,3'-oxybispyridine (obp)配位基依陰離子之不同而形成不同之螺旋狀結構 {[Ag(obp)](X)}_∞,^{16b}發現最短之螺旋間距為化合物{[Ag(obp)](NO₃)}_∞(圖(13)), 而最長之螺旋間距為化合物{[Ag(obp)](PF₆)}_∞.¹⁶

圖(13) {[Ag(obp)](NO3)} 心之晶體結構

化合物{[Ag(bis(4-pyridyl)propane)](CF₃SO₃)}∞(圖(14)),¹⁷有明顯雙股螺旋 之構形,以向左向右形成類似DNA的雙螺旋結構,而此雙螺旋結構是經由 Ag---Ag作用 (Ag---Ag = 3.089Å)形成。¹⁷

圖(14) 雙股螺旋化合物{[Ag(bis(4-pyridyl)propane)](CF3SO3)}∞

在本論文中, Ag(I)與含有配位基 2-Atiae (2-Atiae = N-[(E)-(2-pyridinyl)methylidene]-4H-1,2,4-triazol-4-amine)反應時,共同建構出自我組合(self-assembly)型態的高分子結構。

三、實驗部份

起始物

AgNO₃ 及 AgPF₆ 是 Aldrich Chemical 公司出產, N-[(E)-(2-pyridinyl) methylidene]-4H-1,2,4-triazol-4-amine 是參考文獻方法合成。

製備

 $\{[Ag(2-Atiae)][NO_3]\}_n$

AgNO₃ (0.17 g, 1 mmol)及 2-Atiae (0.17 g, 1 mmol)置入單頸反應瓶中,再注入 10ml CH₃OH。在室溫下攪拌 0.5hr 後,得到白色固體,白色固體過濾,CH₃OH 洗滌,抽乾,得到 0.23 g (68%)。元素分析 C₈H₇AgN₅O₄ 理論值:C: 27.98%; H: 2.04%; N: 20.04%,實際值:C: 27.93%; H: 2.01%; N: 20.14%。

${[Ag(2-Atiae)][PF_6]}_n$

AgPF₆ (0.21 g, 1 mmol)及 2-Atiae (0.17 g, 1 mmol)置入單頸反應瓶中,再注入 10ml CH₃OH。在室溫下攪拌 0.5hr 後,得到白色固體,白色固體過濾,CH₃OH 洗滌,抽乾,得到 0.35 g (82 %)。元素分析 C₈H₇AgF₆N₅P 理論值:C: 22.53 %; H: 1.64 %; N: 16.43 %,實際值:C: 22.50 %; H: 1.64 %; N: 16.45 %。

四、X-ray 晶體結構解析

 ${[Ag(2-Atiae)][NO_3]}_n$

晶體1之X-ray繞射資料的收集,是由Siemen CCD繞射儀在25℃下收集,使用MoK α (K α = 0.71073Å)作為輻射源,資料的還原是使用電腦化的步驟和標準方法,表(1)表示晶體結構的相關資料。藍色{[Ag(2-Atiae)][BF4]}n晶體放在玻璃纖維的頂端,以AB膠固定,使用Hemisphere方法收集,繞射資料,收集範圍4.68 $\leq 2\theta \leq 56.64$ 。繞射點強度經由Corentz和極化(polarization)校正後得到結構因子(structure factors),利用直積法(direct method)得到一個鋅原子的位置,其他的原子則是由一連串的傅立葉轉換與最小平方法計算得到,最後的結果R1=0.0171,wR2=0.0454。表(1)表示晶體的相關資料,表(2)表示晶體1的部份鍵長及鍵角。

 $\{[Ag(2-Atiae)][PF_6]\}_n$

晶體{[Ag(2-Atia)][PF₆]_n的 X-ray 繞射資料收集與上述方法相同,晶體2最後計算結果 R1 = 0.0426 及 wR2 = 0.1677,表(1)為晶體的相關資料,表(3)為晶體2 的部份鍵長及鍵角。

五、結果與討論

合成

由 AgNO₃和一當量的 2-Atiae 於 CH₃OH 中反應可製{ $[Ag(2-Atiae)][NO_3]$ _n。 AgPF₆和一當量的 2-Atiae 於 CH₃OH 中反應可製備{ $[Ag(2-Atiae)][PF_6]$ _n。將 2-Atiae 配位基溶於甲醇中放在 AgX (X = NO₃⁻, 1, 及 PF₆⁻, 2)溶於水中之上,得 到適合 X-ray 解析之晶體,並解析其結構。化合物 1-2 不溶於大部分之有機溶劑 包括甲醇 、乙醇、三氯甲烷、苯、甲苯及丙酮,但溶於 DMSO 及 DMF。

結構

 $\{[Ag(2-Atiae)][NO_3]\}_n$

無色晶體{ $[Ag(2-Atiae)][NO_3]$ }n的空間群為Cc,每單位晶格中有四個分子, 圖(1)表示{ $[Ag(2-Atiae)][NO_3]$ }n的ORTEP圖,由圖(1)可知一個銀原子配位一個 **2-Atiae**配位基之氮原子,Ag(1)-N(1)之鍵長為2.161(4) Å,N(5)#1-Ag(1)-N(1) 之 鍵角為167.63(12)°,Ag---Ag之距離為6.793Å,圖(3)顯示平面一維高分子之圖形, 圖(4)表示{ $[Ag(2-Atiae)][NO_3]$ n的堆疊圖,由圖可得知分子鏈經由氧原子與 **2-Atiae** 配位基碳原子上的氫原子形成氫鍵鍵結(O---H = 2.415-2.454Å; \angle C-H---O = 144.9°、148.0°及152.4°),形成三維的配位高分子。

 ${[Ag(2-Atiae)][PF_6]}_n$

無色晶體{[Ag(2-Atiae)][PF₆]}n的空間群為P 2₁/c,每單位晶格中有四個分子,圖(2)表示{[Ag(2-Atiae)][PF₆]}n的ORTEP圖,由圖(2)可知一個銀原子配位一個2-Atiae配位基之氮原子,Ag(1)-N(1)之鍵長為2.234(3)Å,N(5)#1-Ag(1)-N(1)之鍵角為160.97(13)°,Ag---Ag之距離為6.889Å,圖(3)顯示平面一維高分子之圖形,圖(5)表示{[Ag(2-Atiae)][BF₄]}n的堆疊圖,由圖可得知分子鏈經由氟原子與

2-Atiae配位基碳原子上的氫原子形成氫鍵鍵結(F---H = 2.523 Å; ∠C-H---F = 141.1°)及Ag---F(Ag---F = 2.978 及3.137 Å)的作用力,形成三維的配位高分子。

六、結論

我們成功的合成新的化合物{[Ag(2-Atiae)][X]_n(X = NO₃, PF₆)為配位高分子 化合物,其中化合物{[Ag(2-Atiae)][X]_n(X = NO₃, PF₆)的2-Atiae配位基的氮原子 配位至銀原子形成一維高分子,而化合物1的分子鏈經由圖可得知分子鏈經由氧 原子與2-Atiae配位基碳原子上的氫原子形成氫鍵鍵結,形成三維的配位高分 子,化合物2的分子鏈經由氟原子與2-Atiae配位基碳原子上的氫原子形成氫鍵鍵 結及Ag---F的作用力,形成三維的配位高分子。

參考文獻

- (a) G. R. Desiraju Angew. Chem., Int. Ed. Engl. 1995, 34, 2311.
 (b) G. R. Desiraju Chem. Commun. 1997, 1475.
- 2. G. Wilkinson (Ed.), Comprehensive Coordination Chemistry, 1987, vol. 5, p. 786.
- 3. M. C. T. Fyfe, J. F. Stoddart, Acc. Chem. Res. 1997, 30, 393.
- 4. P. Pyykko, Chem. Rev. 1997, 97, 597.
- 5. A. J. Blake, G. Baum, N. R. Champness, S. S. M. Chung, P. A. Cooke, D. Fenske, A. N. Khlobystov, D. A. Lemenovskii, W. S. Li, M. Schröder, *J. Chem. Soc. Dalton Trans.* **2000**, 4285.
- 6. R. Sneider, M.W. Hosseini, J. M. Planeix, A. D. Cian, J. Fischer, *Chem. Commun.* **1998**, 1625.
- 7. A. F. Wells, Structural Inorganic Chemistry, 5th ed., *Clarendon Press, Oxford*, **1984**.
- 8. M. A. Withersby, A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. Schröder, *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 2327.
- 9. (a) A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, M. Schröder, *Coord. Chem. Rev.* 1999, 183, 117.
 (b) S. Muthu, J. H. K. Yip, J. J. Vittal, *J. Chem. Soc., Dalton Trans.* 2002, 4561, and references cited therein.
- 10. M. A. Withersby, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey, Wan-Sheung Li, M. Schröder, *Cryst. Eng.* **1999**, 2
- 11. L. Carlucci, C. Ciani, D.M. Proserpio, Chem. Commun. 1999, 449.
- A. J. Blake, G. Baum, N. R. Champness, S. S. M. Chung, P. A. Cooke, D. Fenske, A. N. Khlobystov, D. A. Lemenovskii, W. S. Li, M. Schröder, *J. Chem. Soc. Dalton Trans.* 2000, 4285.
- 13. M. L. Tong, X. M. Chen, B. H. Ye, S. W. Ng, *Inorg. Chem.* **1998**, 37, 5278.
- 14. H. P. Wu, C. Janiak, G. Rheinwald, H. Lang, J. Chem. Soc. Dalton Trans. 1999, 183.
- (a)C. A. Hester, R. G. Baughman, H. L. Collier, *Polyhedron* 1997, 16, 2893.
 (b)C. Kaes, M. W Hosseini, C. E. F Rickard, B.W. Skelton, A. H. White, Angew. *Chem. Int. Ed. Engl.* 1997,37, 920.
- (a)L. Carlucci, G. Ciani, D. M. Proserpio, A. Sironi, *Inorg. Chem.* 1998, 37, 5941.
 (b)O. K. Jung, Y. J. Kim, Y. A. Lee, J. K. Park, H. K. Chae, *J. Am. Chem. Soc.* 1998, 122, 9921.

17. L. Carlucci, G. Ciani, D.W. Gudenberg, D. M. Proserpio, *Inorg. Chem.* **1997**, 36, 3812.

formula	C ₈ H ₇ AgN ₅ O ₄	C ₈ H ₇ AgF ₆ N ₅ P
fw	343.07	426.03
crystal system	Monoclinic	Monoclinic
space group	Cc	$P 2_1/c$
a, Å	9.5044(16)	13.7491(8)
b, Å	16.580(2)	10.8426(6)
c, Å	7.7942(4)	8.8097(5)
β ,°	101.257(2)	101.5640(10)
$V, Å^3$	1183.67(10)	1286.66(13)
Z	2	4
d _{calc} ,g/cm ³	2.135	2.199
F(000)	744	824
cryst size, mm	0.20×0.17×0.09	0.72×0.27×0.23
μ (Mo K α),mm ⁻¹	1.947	1.764
data collen instrum	CCD	CCD
radiation monochromated		
in incident beam(λ Mo	0.71073	0.71073
$K\alpha$),Å)		
range(2 θ) for data	$4.68 \leq 2\theta \leq 56.64$	$4.82 \leq 2\theta \leq 52.00$
collection,deg		
temp.°C	25	25
limiting indices	$-11 \le h \le 11, -22 \le k \le 23,$	$-16 \le h \le 16, -13 \le k \le 13,$
C	-10≦1≦8	-6≦l≦10
reflections collected	6407	7022
independent reflections	2463 [R(int) = 0.0185]	2527 [R(int) = 0.0340]
refinement method	Full-matrix least-squares on Σ^2	Full-matrix least-squares on Γ^2
	F	Г 2527 / 0. / 202
data/restraints/parameters	2463/2/1/2	2527/0/203
quality-of-fit indicator	1.064 D1 0.0171 D2 0.0454	1.260 D1 0.0426 D2 0.1677
Tinal K indices $[1 > 2\sigma(1)]$ a,b	K1 = 0.01/1, WK2 = 0.0454	K1 = 0.0426, WK2 = 0.1677
R indices (all data)	R1 = 0.0178, wR2 = 0.0461	R1 = 0.0450, wR2 = 0.1744
Largest diff. peak and	0.439 and -0.312	0.952 and -0.831
hole.e/Å ³		

表(1). 化合物 1-2 的晶體資料

$$\label{eq:R1} \begin{split} ^{a}R1 &= \Sigma ~ \mid\mid F_{\circ}\mid - \mid F_{\circ}\mid\mid /\Sigma ~ \mid\mid F_{\circ}\mid \ . \\ ^{b}wR2 &= [~ \Sigma ~ w(F_{o}{}^{2} - F_{c}{}^{2})^{2} / ~ \Sigma ~ w(F_{o}{}^{2})^{2}]^{1/2}. \\ & w = 1 / [~ \sigma ~^{2}(F_{o}{}^{2}) + (ap)^{2} + (bp)], ~ p = [max(F_{o}{}^{2} ~ or ~ 0) + 2(F_{c}{}^{2})] / ~ 3. ~ a = 0.0317, ~ b = 0.2917. ~ for ~ 1; ~ a = 0.1250, ~ b = 0.0000. ~ for ~ 2 \\ ^{c}quality\text{-of-fit} ~ = ~ [~ \Sigma ~ w(\mid F_{o}{}^{2} \mid - \mid F_{c}{}^{2} \mid)^{2} / ~ N_{observed} - N_{parameters} ~]]^{1/2}. \end{split}$$

鍵長						
Ag(1)-N(5)#1	2.161(4)	Ag(1)-N(1)	2.203(3)			
Ag(1)-O(1)	2.598(4)	Ag(1)-N(2)	2.623(3)			
鍵角						
N(5)#1-Ag(1)-N(1)	167.63(12)	N(5)#1-Ag(1)-O(1)	80.99(13)			
N(1)-Ag(1)-O(1)	107.75(13)	N(5)#1-Ag(1)-N(2)	110.74(11)			

表(2). 化合物{ $[Ag(2-Atiae)][NO_3]$ }n重要部分的鍵長(Å)和鍵角(°)

Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+1/2,z+1/2 #2 x1/2,-y+1/2,z-1/2

表(3). 化合物{ $[Ag(2-Atiae)][PF_6]$ } 重要部分的鍵長(Å)和鍵角(°)

鍵長						
Ag-N(5)#1	2.176(3)	Ag-N(1)	2.234(3)			
Ag-N(2)	2.566(3)					
鍵角						
N(5)#1-Ag-N(1)	160.97(13)	N(5)#1-Ag-N(2)	128.83(12)			
N(1)-Ag-N(2)	69.13(12)	C(1)-N(1)-C(5)	117.6(4)			

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y-1/2,-z+1/2 #2 -x+1,y+1/2,-z+1/2

圖(1). 化合物{[Ag(2-Atiae)][NO₃]}_n的ORTEP圖

圖(2). 化合物{[Ag(2-Atiae)][PF₆]}_n的 ORTEP 圖

圖(3). 化合物{[Ag(2-Atiae)][X]}_n(X = NO₃, PF₆)的一維圖形

圖(4). 化合物{[Ag(2-Atiae)][NO₃]}_n的 Packing 圖

圖(5).化合物{[Ag(2-Atiae)][PF₆]}_n的 Packing 圖