配位高分子化合物自我組合研究

王月花

化學工程與材料工程系

摘要

Two novel supramolecules of the Ag(I) complexes of $[Ag(1,4-Oxa)_{1.5}(ClO_4)]_n$, **1** and $[Ag_2(1,4-Oxa)(CH_3COO)_2]_n$, **2**, (1,4-Oxa = 1,4-bis(4,5-dihydro-2-oxazolyl)benzene) have been prepared by self-assembly of Ag(I) salts with 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (1,4-Oxa) in MeOH/H₂O system. Two of complexes have been structurally characterized by X-ray crystallography confirming that complexes**1**are two-dimensional coordination polymeric chains, while complexes**2**are one-dimensional coordination polymeric chains. The bidentate**1,4-Oxa**ligands in complex**1**bind soft acid Ag(I) ions through the oxazoyl groups forming the 2-D polymeric chain, while in complex**2**,**1,4-Oxa**bound to Ag(I) centers in bi-dentate coordination modes. The anions in complexes**1**-**2**play important roles in linking cationic chains or layers into supramolecular structures.

Keywords: Silver, coordination polymer, bidentate ligand, 1,4-bis (4,5-dihydro-2-oxazolyl) benzene

近幾年來,利用自我組合(self-assembly)的方法設計有機及無機超分子已經被廣泛的研究與探討,此種方法可用於設計更多新型態之化合物,並且可控制化合物本身的物理 及化學性質。¹

超分子化合物使用共價鍵或氫鍵鍵結^{,2}根據文獻的報導利用自我組合(self-assembly)的方法形成 Ag(I)金屬化合物的無機超分子(supermolecule)結構時的作用力分為六種類型:³

一、金屬與配位基間的作用力:

利用 Ag(I)與配位基中具有 N-donor 的吡啶配位基所形成的作用力,⁴如下圖配位基 與 Ag(I)的鍵結型式。

圖(1) 配位基與 Ag(I)的鍵結型式

二、π-π間的作用力:

當含有芳香族之配位基與金屬鍵結時,配位基上的吡啶環或苯環上的π電子之間有交 互作用力存在而結合(如下圖所示)。⁵

a. head-to-tail; b. head-to-head; c. edge-to-face

圖(2) 配位基上的吡啶環或苯環上的π-π作用力的型式

三、金屬與金屬間作用力:

在無機超分子(supermolecule)結構中當配位基與配位基間不具有任何的作用力時, 高分子間的連結是藉由金屬與金屬間的作用力而形成 (如下圖所示)。⁶⁻⁷

四、金屬與 π 電子的作用力:

許多的過渡金屬陽離子能接受由不飽和有機分子所提供的 π 電子,因而形成穩定的 有機金屬分子,如下圖所示 Ag(I)陽離子可與芳香族分子形成弱作用力。⁸

圖(4) Ag(I) 陽離子可與芳香族分子形成弱作用力型式

五、庫侖作用力:

金屬陽離子是利用其正電荷配位形成高分子結構,正電荷可經由配位的陰離子(如未 參與鍵結的PF₆⁻或BF₄⁻)使其形成電中性,對於兩個相鄰超分子間的庫侖排斥力的平衡非 常重要。

95-74

六、陰離子的橋接:

化合物中陰離子的鍵結與否影響高分子的構形,即使是一個微弱的架橋作用力亦可 能導致整體的高分子結構產生扭曲。在本論文中,Ag(I)與含有配位基 **1,4-Oxa** (**1,4-Oxa** = 1,4-bis(4,5-dihydro-2-oxazolyl)benzene)反應時,共同建構出自我組合(self-assembly)型態 的高分子結構。

貳、實驗方法

起始物

AgClO₄ 及 AgOAc 是 Aldrich Chemical 公司出產, 1,4-bis(4,5-dihydro-2-oxazolyl) benzene 是 TCI 公司出產。

製備

 $[Ag(1,4-Oxa)_{1.5}(ClO_4)]_n$

AgClO₄ (0.42 g, 2 mmol)及 **1,4-Oxa** (0.63 g, 3 mmol)置入單頸反應瓶中,再注入 10ml CH₃OH。在室溫下攪拌 0.5hr 後,得到白色固體,白色固體過濾,CH₃OH 洗滌,抽乾,得到 0.66 g (78%)。

 $[Ag_2(1,4-Oxa) (CH_3COO)_2]_n$

AgOAc (0.33 g, 2 mmol)及 **1,4-Oxa** (0.21 g, 1 mmol)置入單頸反應瓶中,再注入 10ml CH₃OH。在室溫下攪拌 0.5hr 後,得到白色固體,白色固體過濾,CH₃OH 洗滌,抽乾,得到 0.42 g (77 %)。

參、X-ray晶體結構解析

晶體 1 之 X-ray 繞射資料的收集,是由 Siemens CCD 繞射儀在 25°C 下收集,使用 MoKa(Ka=0.71073Å)作為輻射源,資料的還原是使用電腦化的步驟和標準方法,表(1) 表示晶體結構的相關資料。無色[Ag₂(1,4-Oxa)(CH₃COO)₂]n 晶體放在玻璃纖維的頂端,以 AB 膠固定,使用 Hemisphere 方法收集,繞射資料,收集範圍 4.50 < 20 < 52.24°繞射點強 度經由 Corentz 和極化(polarization)校正後得到結構因子(structure factors),利用直積法 (direct method)得到一個銀原子的位置,其他的原子則是由一連串的傳立葉轉換與最小平 方法計算得到,最後的結果 R1=0.0529, wR2 = 0.1799。表(1)表示晶體的相關資料,表(2) 表示晶體 1 的重要的鍵長和鍵角,表(3)表示晶體 2 的重要的鍵長和鍵角。

肆、結果與討論

結構

[Ag(1,4-Oxa)_{1.5}(ClO₄)]_n

無色晶體[Ag(1,4-Oxa)_{1.5}(ClO₄)]_n的空間群為 P2₁/c,每單位晶格中有四維個分子,圖 (1)表示[Ag(1,4-Oxa)_{1.5}(ClO₄)]_n的 ORTEP 圖,由圖(1)可知一個銀原子配位三個 1,4-Oxa 配 位基之氮原子,而過氯酸根離子則未配位,Ag-N 之鍵長為 2.159(3) - 2.466(3) Å,N(3)-Ag(1)-N(1)的鍵角為 158.29(11),圖(2)顯示平面二維之圖形,其中大孔洞由六個銀金屬及 六個配位基形成,五十四元環之孔洞,孔洞中存在過氯酸根離子,圖(3)表示[Ag(1,4-Oxa)_{1.5} (ClO₄)]_n的堆疊圖。

$[Ag_2(1,4-Oxa)(CH_3COO)_2]_n$

無色晶體[Ag₂(**1**,**4**-**O**xa)(CH₃COO)₂]_n的空間群為 P-1,每單位晶格中有一個分子,圖 (1)表示[Ag₂(**1**,**4**-**O**xa)(CH₃COO)₂]_n的 ORTEP圖,由圖(1)可知一個銀原子配位一個 **1**,**4**-**O**xa 配位基之氮原子及二個醋酸根離子,Ag-N之鍵長為 2.329(5)Å,Ag-O之鍵長為 2.297(5) -2.289(4)Å,Ag-Ag 之鍵長為 2.719(12) - 2.985(3)Å,O(2)#1-Ag-O(1)的鍵角為 138.99(17), N-Ag-O(1)#2 的鍵角為 104.74(17),圖(2)顯示平面一維之圖形,其中一個[Ag₂(CH₃ COO)₂],一個 **1**,**4**-**O**xa 配位基,串聯成一維配位高分子,圖(3)表示[Ag₂(**1**,**4**-**O**xa) (CH₃ COO)₂]_n的堆疊圖。

伍、結論

我們成功的合成新的化合物 $[Ag(1,4-Oxa)_{1.5}(ClO_4)]_n$ 及 $[Ag_2(1,4-Oxa)(CH_3COO)_2]_n$ 為配位高分子化合物,其中化合物 $[Ag(1,4-Oxa)_{1.5}(ClO_4)]_n$ 的 1,4-Oxa 配位基的氮原子配位 至銀原子形成二維高分子,而 $[Ag_2(1,4-Oxa)(CH_3COO)_2]_n$ 的 1,4-Oxa 配位基的氮原子配位 至銀原子形成一維高分子。

参考文獻

- (a) G. R. Desiraju Angew. Chem., Int. Ed. Engl. 1995, 34, 2311.
 (b) G. R. Desiraju Chem. Commun. 1997, 1475.
- 2. G. Wilkinson (Ed.), Comprehensive Coordination Chemistry, 1987, vol. 5, p. 786.
- 3. M. C. T. Fyfe, J. F. Stoddart, Acc. Chem. Res. 1997, 30, 393.
- 4. P. Pyykko, Chem. Rev. 1997, 97, 597.
- J. Blake, G. Baum, N. R. Champness, S. S. M. Chung, P. A. Cooke, D. Fenske, A. N. Khlobystov, D. A. Lemenovskii, W. S. Li, M. Schröder, J. Chem. Soc. Dalton Trans. 2000, 4285.
- 6. R. Sneider, M.W. Hosseini, J. M. Planeix, A. D. Cian, J. Fischer, Chem. Commun. 1998, 1625.
- 7. F. Wells, Structural Inorganic Chemistry, 5th ed., Clarendon Press, Oxford, 1984.
- 8. M. A. Withersby, A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. Schröder, Angew. Chem. Int. Ed. Engl. 1997, 36, 2327.

八、附錄

表(1). 化合物[Ag(1,4-Oxa) _{1.5} (Cl	$_{4}$] _n , 1 和 [Ag ₂ (1,4-Oxa)]	$(CH_{3}COO)_{2}]_{n}, 2$	的晶體資料
---	--	---------------------------	-------

formula	$C_{18}H_{18}AgClN_3O_7$	$C_{16}H_{18}Ag_2N_2O_6$
fw	425.34	550.06
crystal system	Monoclinic	Triclinic
space group	$P2_1/c$	P-1
a. Å	10,1626(11)	5.441(3)
h Ă	13 5816(11)	8 743(5)
c Å	14 6658(19)	9 258(5)
0, 11	14.0030(17)	81 1/3(11)
ßo	102 / 28(8)	80 835(10)
p,	102.428(8)	96545(11)
X7 Å 3	1076 9(4)	420.2(4)
V, A	1970.8(4)	429.3(4)
Z	4	1
d _{calc} ,g/cm ⁻⁵	1./86	2.317
F(000)	1068	270
μ (Mo K α),mm ⁻¹	1.202	2.317
range(2θ) for data	$4.10 \le 2\theta \le 55.00$	$4.50 \le 2\theta \le 52.24$
collection,deg		
limiting indices	$-1 \le h \le 13, -1 \le k \le 17, -19$	$-6 \le h \le 6, -10 \le k \le 9,$
6	$\leq l \leq 18$	$-11 \le 1 \le 7$
reflections collected	5730	2346
independent reflections	4527 [R(int) = 0.0283]	1656 [R(int) = 0.0464]
data/restraints/parameters	5237/0/386	1656 / 0 / 127
quality-of-fit indicator ^c	4527 / 0 / 271	1.302
final R indices $[I > 2\sigma(I)]$	1.057	R1 = 0.0529.
a,b		wR2 = 0.1799
R indices (all data)	R1 = 0.0410 WR2 = 0.0755	R1 = 0.0546
it marces (un dutu)	101 - 0.0710, w102 - 0.0755	$wR2 = 0.00 \pm 0,$
Largest diff near and help $a/Å^3$	$P_1 = 0.0717 \text{ w}P_2 = 0.0847$	1.181 and 1.050
Largest unit. peak and note,e/A	$K_1 = 0.0717, WK_2 = 0.0647$	1.101 and -1.030

 $\label{eq:rescaled_states} \begin{array}{l} {}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| \, / \, \Sigma |F_{o}|. \\ {}^{b}wR2 = [\Sigma w(F_{o}^{\, 2} - F_{c}^{\, 2})^{2} \, / \, \Sigma w(F_{o}^{\, 2})^{2}]^{1/2}. \\ w = 1 \, / \, [\sigma^{2}(F_{o}^{\, 2}) + (ap)^{2} + (bp)], \, p = [max(F_{o}^{\, 2} \, or \, 0) + 2(F_{c}^{\, 2})] \, / \, 3. \, a = 0.0000, \, b = 1.9076. \, for \, 1; \, a = 0.1350, \, b = 0.0000. \, for \, 2. \\ {}^{c}quality\text{-of-fit} = \quad [\Sigma w(|F_{o}^{\, 2}| - |F_{c}^{\, 2}|)^{2} \, / \, N_{observed} - N_{parameters} \,]]^{1/2}. \end{array}$

	• () • • • • • • • • • •	/ /1.5 (
	鍵	長		
Ag(1)-N(3)	2.159(3)) Ag(1)-	N(1)	2.174(3)
Ag(1)-N(2)#1	2.466(3))		
	鍵	角		
N(3)-Ag(1)-N	(1) 158.29(11) N(3)-A	vg(1)-N(2)#1	106.78(11)
N(1)-Ag(1)-N	(2)#1 93.70(1	1)		

表(2). 化合物[Ag(1,4-Oxa)_{1.5}(ClO₄)]_n重要部分的鍵長(Å)和鍵角(°)

Symmetry transformations used to generate equivalent atoms: #1 -x,y-1/2,-z+1/2 #2 -x,y+1/2,-z+1/2 #3 -x,-y+1,-z+1

	鍵長		
Ag-O(2)#1	2.297(4)	Ag-O(1)	2.289(4)
Ag-N	2.329(5)	Ag-O(1)#2	2.460(4)
Ag-Ag#1	2.985(3)		
	鍵角		
O(2)#1-Ag-O(1)	138.99(17)	O(2)#1-Ag-N	100.08(16)
O(1)-Ag-N	118.14(17)	O(2)#1-Ag-O(1)#2	107.75(14)
O(1)-Ag-O(1)#2	77.79(15)	N-Ag-O(1)#2	104.74(17)
O(2)#1-Ag-Ag'#1	81.2(2)	O(1)-Ag-Ag'#1	72.6(2)
O(2)#1-Ag-Ag#1	79.97(12)	O(1)-Ag-Ag#1	72.21(12)
N-Ag-Ag#1	112.88(12)	O(1)#2-Ag-Ag#1	139.68(12)

表(3).	化合物[Ag ₂ (1.4-Oxa)	(CH3COO)2]。重要部分的鍵長	٢Å)和鍵角(°)
			·	$\gamma = \gamma - \gamma + \langle \gamma \rangle$	

Symmetry transformations used to generate equivalent atoms:

-	•	U	
#1	-x,y+1/2,-z+1/2	#2 -x,y-1/2,-z+1/2	#3 -x,-y,-z+1

圖(1). 化合物[Ag(1,4-Oxa)_{1.5}(ClO₄)]_n的 ORTEP 圖

圖(2). 化合物[Ag(1,4-Oxa)_{1.5}(ClO₄)]_n的二維圖形

圖(3). 化合物[Ag(1,4-Oxa)_{1.5}(ClO₄)]_n的 Packing 圖

圖(4). 化合物[Ag₂(1,4-Oxa)(CH₃COO)₂]_n的 ORTEP 圖

圖(5). 化合物[Ag₂(1,4-Oxa)(CH₃COO)₂]_n的一維圖

圖(6). 化合物[Ag₂(1,4-Oxa)(CH₃COO)₂]_n的 packing 圖