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Abstract 

    During the past three decades or so, the widely-investigated subject of fractional 

calculus (that is, calculus of derivatives and integrals of any arbitrary real or complex 

order) has remarkably gained importance and popularity due chiefly to its demonstrated 

applications in numerous seemingly diverse fields of science and engineering. Recently, 

many problems in the physical sciences can be expressed and solved succinctly by 

recourse to the fractional calculus. Various problems which arise from the physical 

situation lead to certain classes of partial differential equations. The classical methods in 

obtaining solutions of the boundary value problems of mathematical physics are Fourier 

transform, and other integral transforms. The main object of this paper is by using the 

method of Fractional Calculus to get the closed solution of various engineering 

problems. That is we use the method of fractional calculus to solve the Partial 

Differential Equations, such as heat equation, and Laplace’s equation.   
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1. INTRODUCTION 

    We first introduction the definitions, lemma, and theorems of fractional calculus: 

 (1) Definition . (by K. Nishimoto) [12] 

Let ,D D D  , ,C C C

C  be a curve along the cut joining two point z and i Im z  ,  

C  be a curve along the cut joining two point z and i Im z  , 

D  be a domain surrounded by C  , D  be a domain surrounded by C  ,  

( Here D contains the points over the curve C ) 

Moreover , let f f z  be a regular function in D z D  ,  

1

1
2 C

f
f f c f d

i z
Z  ,   (1.1) 

lim
m m

f f m Z                           (1.2) 

where arg z  for C  , 0 arg 2z  for C  ,  

z  , z C  , R  , : Gamma function ,  

then f  is the fractional differintegration of arbitrary order  (derivatives of 

order  for 0  , and integrals of order  for 0 ) , with respect to z , of 

the function f , if f  . 

 (2) On the fractional calculus operator N  [13] 

Theorem A.  Let fractional calculus operator (Nishimoto’s operator) N  be 

1

1
2 C

dN
i z

Z  , [Refer to (1.1)]         (1.3) 

with  
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limm

m
N N m Z  ,                                (1.4) 

and define the binary operation  as 

N N f N N f N N f , R  ,               (1.5) 

then the set  

N N R                                         (1.6) 

is an Abelian product group (having continuous index ) which has the inverse 

transform operator 
1

N N  to the fractional calculus operator N  , for the 

function f such that ;0 ,f F f f R  , where f f z  and 

z C  . (viz. ) . 

(For our convenience , we call N N  as product of N  and N )

Theorem B.  The " . . . "F O G N  is an “ Action product group which has 

continuous index  “ for the set of F.(F.O.G.: Fractional calculus operator group)  

 (3) Lemma 1 We have [12] 

(i)

iz c e z c  , (1.7) 

(ii)

log iz c e z c  ,  (1.8) 

(iii)
1 logiz c e z c  ,  (1.9) 

(iv)

0

1
! 1 k k

k
u u

k k
( ), ( )u u z z   (1.10) 
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where z c  in (1.7) ,  (1.8) and (1.9) . 

2. FORMULATION 

    For a function u = u(z, t) of two independent variables z and t, we choose to use the 

convenient notation: 
u

z t
 (2.1) 

to abbreviate the partial fractional differintegral of u = u(z, t) of order with respect to 
z and of order  with respect to t , R .

0
0

( ; ) :     0;
p

p k
k

k
P z p a z a p N  (2.2) 

0
0

( ; ) :     0;
q

q k
k

k
Q z q b z b q N                    (2.3) 

1

;
( ; , ) :     \ , ,

;

z

p

Q q
H z p q d z C z z

P p
        (2.4) 

Theorem 1 [9] 

Let the polynomials P(z; p) and Q(z; q) be defined by (2.2) and (2.3), respectively. 

Suppose also that the function H(z; p, q) is given by (2.4). Then the linear partial 

fractional differintegral equation 
1

1
1 1

2 1

2

; ; ; 1
1

   , ;    ,

k pp q

k k k p
k k

p p

p p

u u uP z p P z p Q z q C
k kz z z

u uA B R p q N
z t z t  (2.5) 

has solutions of the form    
( ; , 1)

1 1

( ; , 1)
2 1

     ( 0)
( , )

    ( 0; 0)

H z p q t

H z p q t

K e e A
u z t

K e e A B
     (2.6) 

where 1K  and 2K  are arbitrary constants, A, B and C are given constants, and  and 

 are defined by 
2 4( )

: ,   ( 0)  and  : ,   ( 0; 0)
2

B B C D A C DA A B
A B  (2.7) 

with  

0,: !D p a
p

                          (2.8) 
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provided that the second member of (2.6) exists in each case. 

Theorem 2 [11] 

The second-order linear partial differential equation: 
2

2

2

2

2 1 1 ( , )

    \ { , };   0;   

u uz z z Cu z t
z z

u uA B z C R
t t  (2.9) 

has solutions of the form:  

/ /
1

/ /
2

( , )

0

0; 0

\ , ;   ;   0;   

t

t

u z t

K z z e A

K z z e A B

z C R     (2.10) 

and

/
1

/
2

( , )

0

0; 0

\ , ;   ;   0;   

z t

z t

u z t

K z e e A

K z e e A B

z C R   (2.11) 
where 1K  and 2K  are arbitrary constants, A, B and C are given constants, and  and 

 are defined by (2.7) with  
: 1D

provided that the second members of (2.10) and (2.11) exist in each case. 

3. SOLUTIONS OF SECOND-ORDER LINEAR PARTIAL  
  DIFFERENTIAL EQUATIONS 

We can solve the boundary-value problems involving Laplace’s equation by the method 

of fractional calculus. 
2 2

2 2 2

1 1 0u u u
r r r r

By theorem 2, let 
21,  0,  0,  ( , 2) ,  ( ,1) ,  2 1 1,  0A B C P r r Q r r ,
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we have  
2

2

1 1

4
1

2

D

B B C D A
i

A

(1) When  
1 0,   let  1

2, 3,     1,2,
m

m
( , )  where = miiu r K r e

1

1

1
            =

2 1

            =(-1)   
2 1

i

i

m m

r e r

e r
v

m
r

m

So,
( , ) cos sin ,    1,2,3,m

m m mu r r C m D m m

We must define 0,   0,    for 1,2,3,m mC D m  in order to guarantee that the 

solution u is bounded at the center of the plate (which is r =0).

(2) When 
1 0,   let 1n

( , )   where = niiu r K r e

As 1
1 1 0 11

1,   lnu K r A c r . We must define 1c = 0 in order to guarantee 

that the solution u is bounded at the center of the plate (which is r =0).  

1

For =0,1,2, , 

1
                                        =

2 1

2
                                        =   

1

i

i

n

r e r

e r
v

n
r

n

then ( , ) cos sin ,    1,2,3,n
n n nu r r A n B n n . Thus 

0
1

( , ) cos sin ,    1,2,3,n
n n

n
u r A r A n B n n

Conclusion, we use the method of fractional calculus to solve the Laplace’s equation. 
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