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Abstract 

In this paper, we study the spreading of infections in complex heterogeneous networks based on an 

SIRS epidemic model with birth and death rates. We find that the dynamics of the network-based 

SIRS model is completely determined by a threshold value. If the value is less than or equal to one, 

then the disease-free equilibrium is globally attractive and the disease dies out. Otherwise, the 

disease-free equilibrium becomes unstable and in the meantime there exists uniquely an endemic 

equilibrium which is globally asymptotically stable. A series of numerical experiments are given to 

illustrate the theoretical results. We also consider the SIRS model in the clustered scale-free 

networks to examine the effect of network community structure on the epidemic dynamics.  

Keywords: epidemic model; complex network; community structure; Lyapunov function; global 

stability.  

AMS subject classifications: 92D30; 34D23; 37B25; 05C82.  

Running title: Epidemic spreading in complex heterogeneous networks.  

1. Introduction  

The mathematical modeling of infectious disease spreading has been extensively studied for a long 

time; see [5] and many references cited therein. For better understanding the spreading dynamics, a 

lot of epidemic models have been developed and analyzed. One kind of such models is the so-called 

compartmental models which are composed of ordinary differential equations (ODEs) [5, 7, 11, 22]. 

In this kind of approach, the entire population are divided into different compartments and each 

compartment corresponds to an epidemiological state which depends on the characteristics of the 

particular disease being modeled. In general, the underlying assumption for compartmental models is 

that the population size is large enough such that the mixing of individuals is homogeneous. 

However, it has been observed that in reality, there exist some members, called super-spreaders, who 

could transmit infection to many other members of the population [19]. Thus, the homogeneous 

mixing hypothesis may not be appropriate when the effect of contact heterogeneity is incorporated 
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into the compartmental models.  

To deal with the effect of contact heterogeneity, the disease transmission should be modeled over 

complex heterogeneous networks. In a complex network, each node represents an individual in its 

corresponding epidemiological state, and each edge between two nodes stands for an interaction that 

may allow disease transmission. In recent years, considerable concern has arisen over the 

heterogeneity in human contact patterns in epidemic spreading research. Several network-based 

approaches have been developed to model such complex patterns of interactions. We refer the reader 

to, e.g., [3, 4, 6, 9, 10, 12, 15, 17, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30]. One of the pioneer works 

in this area was introduced by Pastor-Satorras and Vespignani [17, 18]. They studied the SIS model 

in scale-free networks [2] and showed that the spread of infections is tremendously strengthened on 

scale-free networks. Also, the SIR model in complex networks was studied in [12], and it is indicated 

that the connectivity fluctuations of the network play a major role by strongly enhancing the 

incidence of infection.  

It is worth noting that the above-mentioned studies [17, 18] figured out that there exists an 

epidemic threshold so that if the effective spreading rate is above this threshold, then the infection 

can produce an epidemic outbreak. However, to the best of our knowledge, there is not a 

mathematically rigorous proof for such significant results until the seminal paper of Wang and Dai 

[20]. They proved that if the effective spreading rate is above the epidemic threshold, then as long as 

there exist infected nodes in the network initially, infections will spread and eventually approach a 

unique positive equilibrium of the network-based SIS model. Very recently, in [29], the authors 

proposed a new network-based SIS model with nonlinear infectivity as well as birth and death rates. 

The basic reproductive number 0R  (cf. [1]) was established and it was shown that if 10 R , then 

the disease-free equilibrium is globally attractive. Otherwise, the positive epidemic equilibrium is 

globally attractive. Moreover, the authors also studied a generalized epidemic model on complex 

heterogeneous networks in [30]. Besides, an SEIRS model with infectivity assumed to be either 

constant or proportional to the node degree in scale-free networks was presented in [10], in which the 

local stability analysis of the disease-free equilibrium and the permanence of the disease in the 

network were provided.  

As we have seen in the literature, the most important issues for studying the epidemic models in 

mathematical epidemiology are the stability and permanence. For the traditional compartment 

models, many advances have been made in this direction; see e.g., [5, 7, 22] and many references 

cited therein. However, to date, there has been relatively little research conducted on network-based 

epidemic models [10, 16, 20, 21, 23, 25, 27, 28, 29, 30]. The main purpose of this paper is to study 

the global dynamics of a newly proposed SIRS network-based model with birth and death rates as 

well as nonlinear infectivity. We first establish the new epidemic threshold 0R , see (2.2) below, 

which determines the existence of the positive endemic equilibrium. We then prove that if the 
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threshold value 10 R , the disease-free equilibrium is globally attractive. Moreover, it is indeed 

globally asymptotically stable provided 10 R . Otherwise, if 10 R  then the disease-free 

equilibrium is unstable and at the same time, there exists uniquely a positive endemic equilibrium 

which is globally asymptotically stable.  

In this paper, we perform numerical experiments of several illustrative examples with a finite size 

of scale-free network to support the theoretical analysis. Since it has been pointed out that the social 

networks has community structure [9, 13, 14], we further consider the SIRS model in the so-called 

clustered scale-free networks, that is, within which each cluster is a scale-free subnetwork, to 

examine the effect of network community structure on the epidemic dynamics. In our numerical 

experiments, we find that for the convergence of disease-free steady state, the larger the degree of 

community is, the faster the convergence will be. On the other hand, for the convergence of endemic 

steady state, the larger the degree of community is, the stronger the density of susceptible nodes will 

be and, in contrast, the weaker the densities of infected and recovered nodes are.  

The rest of this paper is organized as follows. In Section 2, we propose a network-based SIRS 

epidemic model with birth and death rates. We then discuss the positivity and boundedness of 

solutions of the SIRS epidemic system. In Section 3, we study the global stability of the disease-free 

and endemic equilibria. In Section 4, a series of numerical experiments are given to illustrate the 

theoretical results. Finally, conclusions and future works are drawn in Section 5. 

2. Network-based SIRS model  

In this section, we will propose a network-based SIRS epidemic model with birth and death rates. 

First, we classify all the nodes in the given network into n groups such that the nodes in the same 

group have the same connectivity (i.e., the same degree). That is, each node in the i-th group has the 

same connectivity, say ik , for i =1, 2, ··· ,n. In addition, according to the spreading of SIRS process, 

each node could have one of the three epidemiological states: susceptible, infected, or recovered. 

Therefore, we let )(tS
ik , )(tI

ik  and )(tR
ik  be the densities of susceptible, infected and recovered 

nodes of the i-th group at time t, respectively, and let )()()()( tRtItStN
iiii kkkk   for all 0t  

and i =1, 2, ··· ,n. With these notations, the dynamics of the network-based SIRS model can be 

described by the following system of ODEs: 
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where 0)( ik  is the degree-dependent infection rate; the natural births and deaths are 
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proportional to the density of nodes with birth rate 0b  and death rate 0 ; 0  is the 

recovery rate of the infected nodes; 0  is the average loss of immunity rate. The dynamics of n 

groups of SIRS subsystems are coupled through the function Θ(t), which is the proportion of 

infective occupied edges over the entire network given by 

)()()(
1

)(
1

tIkPk
k

t
jk

n

j
jj


   

where 0)( jkP  is the probability that a node has degree jk  and thus   n

j jkP1 1)( ; 

 
n

j jj kPkk 1 )( denotes the mean degree; )( jk  denotes the infectivity of a node with degree jk . 

It should be noticed that various types of the infectivity )( jk  have been considered. For instance, 

the simplest type is constant infectivity Ck j )( [10, 24], the second type is given as 

jj kk )( [9, 12, 17, 18, 20], the third type takes the form )()( jjj kTkk  [15] with probability 

)( jkT  that an infected node would actually admit an infection through an edge connected to a 

susceptible node. Besides, a nonlinear infectivity )1()( a
j

a
jj kkk   was concerned in [26, 29]. 

We will consider various infectivities in the numerical experiments in Section 4. 

Throughout this paper, we need the following assumptions: (i) the infection rate is assumed to be 

bounded, that is, there exists two constants   and   such that   )(0 ik  for all i; (ii) the 

total number of nodes is constant so that deaths are balanced by births and hence b ; (iii) the 

degree of each node is assumed to be time invariant, that is, the network is static. In reality, the 

network will be dynamic where new nodes (i.e., born) are added into the network and old nodes are 

removed (i.e., dead) from the network. However, the adding and removal nodes and edges only take 

a small proportion in the network and will slightly change the structure of the network. Thus, this is a 

reasonable simplification (cf. [29]).  

For a practical consideration, we will focus on the dynamics of solutions of SIRS system (2.1) in 

the following bounded region:  

  niRISRISRISRIS
iiiiiinnn kkkkkkkkkkkk  1,1,0,0,0:,,,,,,:

111
 , 

and the initial conditions will be given in Ω with Θ(0) > 0. We now establish some properties of 

solutions of SIRS system (2.1).  
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Lemma 2.1. Let  
nnn kkkkkk RISRIS ,,,,,,

111
  be the solution of SIRS system (2.1) with a given 

initial condition in Ω and Θ(0) > 0. Then for i =1, 2, ··· ,n, we have 

1)(0  tS
ik , 1)(0  tI

ik , 1)(0  tR
ik and Θ(t) > 0 for all 0t .  

One can easily find that the SIRS system (2.1) always has a disease-free equilibrium  

0E =   TEEE 000 ,,,  nF  with )0,0,1(0 E  and 3RF  . Now, we are going to show that there 

exists a threshold value 0R , which is related to the parameters in system (2.1) and the network 

structure, such that if 10 R  then another unique endemic equilibrium exists as well. Later in 

Section 3, we will further prove that the global stability of these two equilibria is indeed completely 
determined by the threshold value 0R .  

Lemma 2.2. Define the value  

k

kk
R
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 ,                            (2.2) 

where )()()(:)()( 1 i
n
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3. Global stability of equilibria  

In this section, the global stability of equilibria 0E  and *E  will be investigated. We first consider 

the local asymptotic stability and then the global attractivity of the disease-free equilibrium 0E . 

More specifically, we will show that if the threshold value 10 R , then 0E  is globally asymp-

totically stable and if 10 R , it is globally attractive. Otherwise, it is unstable. We now state the 

results of the local stability of 0E  

Theorem 3.1. The disease-free equilibrium 0E  of SIRS system (2.1) is locally asymptotically 

stable if 10 R  and it is unstable if 10 R .  

Theorem 3.2. If 10 R , then the disease-free equilibrium 0E  of  SIRS system (2.1) is globally 

asymptotically stable. If 10 R , then 0E is globally attractive.  
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The following result is obtained by constructing a suitable Lyapunov function with the LaSalle’s 

invariant principle [8].  

Theorem 3.3. If 10 R , then the endemic equilibrium *E  of SIRS system (2.1) is globally 

asymptotically stable. 

4. Numerical experiments  

In this section, we will give several numerical examples with various infectivities �(ki) to illustrate 

the theoretical analysis. The considered network architecture is the scale-free network constructed by 

means of the preferential attachment algorithm [2]. Later, we will investigate the epidemic dynamics 

on clustered scale-free networks, namely, consisting of scale-free subnetworks. Some interesting 

phenomena can be observed in our simulations. 

4.1. Global stability of the disease-free equilibrium 0E   

In this subsection, we give three examples respective corresponding to linear, constant and nonlinear 
infectivity )( ik  to verify the stability of the disease-free equilibrium 0E . The numerical 

simulations are performed based on a scale-free network with 100 nodes. The scale-free network is 
constructed in the following manner [2]: it starts with 50 m  fully connected nodes, and then each 

time a new node is added to the network with 2m  links until the network size 100 is reached. In 

simulation we find that there are 15 different values of degree, i.e., 15n , the minimum degree 

21 k , the maximum degree 2015 k , and the mean degree 4k . The schematic diagram of the 

scale-free network with a smaller size 20 is depicted in Figure 1. 

 
Figure 1. A Barab´asi-Albert scale-free network of 20 nodes with 50 m  and 2m  

Example 4.1. Let the infection rate ii kk  )(  with 01.0  and the infectivity ii kk )( [17]. 

This leads to 2972.0)()( kk  . Other parameters in system (2.1) are chosen as 05.0 , 

05.0 b  and 1.0 . Then one can verify that 17430.00 R . Thus, it follows from 
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Theorem 3.2 that the disease-free equilibrium 0E  is globally asymptotically stable. To illustrate 

this global property, we measure the error between a given trajectory with 0E  by 

   T
kkkkkk tRtItStRtItStErr

nnn
)(),(),(,),(),(),(:)(

111


0E  for 0t ,        (4.1) 

and we use 20 different initial conditions to plot the time evolution of )(tErr  in Figure 2(a). As it is 

seen, for each initial condition, the error curve approaches to zero eventually and so the 
corresponding solution converges to 0E  asymptotically. In addition, the time evolution of the 

densities of each state for an initial condition are drawn in Figure 2(b), 2(c) and 2(d). One can 

observe that the disease indeed dies out eventually.  

 
Figure 2. (Example 4.1) (a): The plot of )(tErr  for 20 different initial conditions; 

(b)(c)(d): The time evolution of the densities of each state for an initial condition. The 
parameters are given by ii kk 01.0)(  , ii kk )( , 05.0 , 05.0 b  and 

1.0 . The epidemic threshold value is 7430.00 R . 

Example 4.2. We now consider another system with the same settings as in Example 4.1, except for 

the infectivity 2)(  Cki  (cf. [24]). Then we have 08.0)()( kk   and we can deduce that 

12.00 R . By Theorem 3.2, the disease-free equilibrium 0E  is globally asymptotically stable. 

The plots of )(tErr  and the time evolution of the densities of each state are depicted in Figure 3.  

Example 4.3. The last example in this subsection is a system with the nonlinear infectivity 

)1()( a
j

a
jj kkk    with 5 , 1  and 5.0a [26]. Other parameters are set the same as 

in Example 4.1. Thus, we have 1383.0)()( kk   and 13457.00 R . Due to Theorem 3.2 
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again, the disease-free equilibrium E0 is globally asymptotically stable. The plots of )(tErr  and the 

time evolution of the densities of each state are depicted in Figure 4. 

 

Figure 3. (Example 4.2) (a): The plot of )(tErr  for 20 different initial conditions; 

(b)(c)(d): The time evolution of the densities of each state for an initial condition. The 
parameters are the same as in Example 4.1 except for 2)( ik . The epidemic 

threshold value is 2.00 R . 

 
Figure 4. (Example 4.3) (a): The plot of )(tErr  for 20 different initial conditions; 

(b)(c)(d): The time evolution of the densities of each state for an initial condition. The 

parameters are the same as in Example 4.1 except for )1(5)( iii kkk  . The 

epidemic threshold value is 3457.00 R . 
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4.2. Global stability of the endemic equilibrium *E  

In this subsection, we turn to verify the global asymptotical stability of the endemic equilibrium *E . 

The considered network architecture is the same as in Subsection 4.1. Three examples are given to 

confirm the analysis made in Theorem 3.3.  

Example 4.4. In this example, the parameters are chosen the same as in Example 4.1, except for 
01.0 b . Then, one can verify that 12383.10 R . Thus, it follows from Theorem 3.3 that the 

endemic equilibrium *E
 
is globally asymptotically stable. Similarly, the error plots for 20 different 

trajectories and the time evolution of the densities of each state for an initial condition are drawn in 

Figure 5. Here the error measurement is replaced by 

   T
kkkkkk tRtItStRtItStErr

nnn
)(),(),(,),(),(),(:)(

111




*E  for 0t ,        (4.2) 

From Figure 5, one can see that the densities of each state converge to a positive value for 

sufficiently large t . This shows that the disease is persistent in the network and approaches an 

equilibrium state eventually. 

 
Figure 5. (Example 4.4) (a): The plot of )(tErr  for 20 different initial conditions; 

(b)(c)(d): The time evolution of the densities of each state for an initial condition. The 

parameters are the same as in Example 4.1, except for 01.0 b . The epidemic 

threshold value is 2383.10 R .  

Example 4.5. We now consider another system with the same settings as in Example 4.2, except for 

05.0  and 01.0 b . This implies that 4.0)()( kk   and we can deduce that 

16667.10 R . According to Theorem 3.3, the endemic equilibrium *E
 
is globally 
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asymptotically stable. The plots of )(tErr  for 20 initial conditions and the time evolution of the 

densities of each state for an initial condition are depicted in Figure 6.  

Example 4.6. The example is set the same as Example 4.3, except for 10  and 01.0 b . 

Thus, we have 2776.0)()( kk   and 11524.10 R . It follows from Theorem 3.3 that the 

endemic equilibrium *E  is globally asymptotically stable. The plots of )(tErr  and the time 

evolution of the densities of each state with the nonlinear infectivity )1(10)( iii kkk   are 

depicted in Figure 7. 

 

Figure 6. (Example 4.5) (a): The plot of )(tErr  for 20 different initial conditions; 

(b)(c)(d): The time evolution of the densities of each state for an initial condition. The 

parameters are given by 05.0 and 01.0 b . The epidemic threshold value is 

6667.10 R . 
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Figure 7. (Example 4.6) (a): The plot of )(tErr  for 20 different initial conditions; 

(b)(c)(d): The time evolution of the densities of each state for an initial condition. The 

parameters are the same as in Example 4.1 except for )1(10)( iii kkk   and 

01.0 b . The epidemic threshold value is 1524.10 R . 

4.3. Clustered scale-free networks  

So far we have observed the dynamical behavior of various SIRS systems in a single scale-free 

network. However, the social networks should have some clustered structure (also called community 

structure). For examining the effect of community structure, it is fundamental to study the epidemic 

dynamics in clustered networks. In [9], the authors studied how the clustered structure affects 

epidemic spreading and each cluster in their clustered network is a random subnetwork. Nevertheless, 

we will study another type of clustered networks, that is, clustered scale-free networks within which 

each cluster is a scale-free subnetwork. The model of clustered scale-free network is constructed in 

the following manner: each scale-free subnetwork is generated by the preferential attachment 
algorithm as we described in Subsection 4.1, namely, it starts with 50 m  fully connected nodes, 

and then continuously adds a new node with 2m  links until a prescribed network size N  is 

reached. This implies that the averaged degree of this subnetwork is m2 . In fact, the total links 

within each cluster is mN , so that the probability of intra-cluster links is )1(2  Nmps . Assume 

that there are M such scale-free subnetworks are generated, we use the probability of inter-cluster 
links lp  to control the links between every two nodes in different clusters. Thus we can define the 

degree of community ls pp: (cf. [9]). We are now in a position to investigate the SIRS 

dynamics in such a clustered scale-free network. 

Example 4.7. This example is devoted to illustrate the case of 10 R . There are 1000 nodes divided 
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uniformly into 10 clusters. The forms of infection rate )( ik  and infectivity )( ik  and other 

parameters are the same as in Example 4.1. We then define the global average densities of the three 

epidemic states as follows: 

)()()(
1

tSkPtS
ik

n

i
i


 , )()()(

1

tIkPtI
ik

n

i
i


 , )()()(

1

tRkPtR
ik

n

i
i


  

In our simulations, for each degree of community, we take 20 configurations and for each 

configuration, we consider 20 different initial conditions. Thus, we perform 400 realizations to 

obtain statistically reliable results. The averaged numerical results with various degrees of 

community are depicted in Figure 8, from which we can see that the disease dies out for all degrees 

of community. Furthermore, it is shown that the larger the degree of community is, the more rapid 

convergence to the disease-free steady state will be. 

Example 4.8. We now turn to the case of 10 R . As in Example 4.7, we consider 1000 

nodesdivided uniformly into 10 clusters. The parameters in SIRS system (2.1) are chosen the same as 

in Example 4.4. The averaged numerical results with various degrees of community are reported in 

Figure 9. One can observe from Figure 9 that each state converges to a positive value and so the 

disease persists for all degree of community. Moreover, we can see that the larger the degree of 

community is, the stronger the density of susceptible nodes will be, but the weaker the densities of 

infected and recovered nodes are. 
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Figure 8. (Example 4.7) Time evolution of the global average densities of each state with 

different degrees of community,  20, 40, ··· , 100. The right column contains local 

amplifications of the left column.  

 
Figure 9. (Example 4.8) Time evolution of the global average densities of each state with 

different degrees of community,  20, 40, ··· , 100. 
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5. Conclusions and future works  

In this paper, we have investigated the epidemic dynamics of an SIRS model with birth and death 

rates in complex heterogeneous networks. We have proved that there exists a threshold value 

0R which determines not only the existence of the endemic equilibrium *E  but also the global 

stability of the disease-free equilibrium E0 and the endemic equilibrium *E . More specifically, we 
have proved that if 10 R  then 0E  is globally asymptotically stable, and as 10 R , 0E  is 

globally attractive. This indicates that if 10 R  and there are infected nodes at the initial time, the 

disease always dies out. On the other hand, if 10 R  then the disease-free equilibrium 0E  

becomes unstable and in the meantime, there exists uniquely an endemic equilibrium *E which is 
globally asymptotically stable. This means that if 10 R  and there are infected nodes at the initial 

time, the disease will be persistent in the network and it will approach a positive equilibrium state 

eventually.  

We have also performed a series of numerical experiments to confirm the correctness of the 

theoretical analysis. In addition, for examining the effect of community structure of the complex 

heterogeneous networks on the epidemic dynamics, we have considered the epidemic spreading in 

the clustered scale-free networks. We have found that for the convergence of the disease-free steady 

state, with the increase of the degree of community, the convergent rate to the disease-free 

equilibrium will be increased. On the other hand, for the convergence of endemic steady state, the 

larger the degree of community is, the stronger the density of susceptible nodes will be, but the 

weaker the densities of infected and recovered nodes are.  

Finally, we conclude this paper with the following remark. From the threshold value 0R  given 

in (2.2), one can find that it is dependent on the infectivities )( ik , the infection rates through each 

edge )( ik  and the mean degree k  of the considered network. In other words, the network 

topology will affect the value of 0R . Consequently, how to control the epidemic spreading by 

changing the topology of the complex heterogeneous network will be a fundamental issue. This effort 

is in progress and we will report the results in the near future. 
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